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Exercice 1

1. Par définition, on a :
1A : R → {0, 1}

x 7→
{

1 si x ∈ [−4,−1] ∪ [1, 5]
0 sinon

D’où le graphique suivant :

2. Par définition, pour tout x ∈ E, 1E(x) = 1, ainsi :

1E est la fonction constante égale à 1

D’autre part, pour tout x ∈ E, 1∅(x) = 0 :

1∅ est la fonction constante égale à 0

3. (a) Soit A ⊂ E, la fonction 1A ne prend que les valeurs 0 ou 1. Ainsi pour tout x ∈ E, 1A(x)2 = 1A(x), ce qui
permet de dire que :

12
A = 1A

(b) On peut traiter cette questions à l’aide d’un tableau récapitulatif, prenons A et B deux parties de E et x
un élément de E :

x ∈ A x ∈ B 1A(x) 1B(x)

cas 1 oui oui 1 1

cas 2 oui non 1 0

cas 3 non oui 0 1

cas 4 non non 0 0

On a :
A ⊂ B ⇔ on se trouve dans les cas 1, 3 ou 4 ⇔ 1A ≤ 1B

A ⊂ B ⇔ 1A ≤ 1B

Il y a bien entendu d’autres façon de rédiger cette question sans l’aide de ce tableau et en traitant les
différents cas possibles.
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(c) On utilise la question précédente, soient A et B deux parties de E :

A = B ⇔ A ⊂ B et B ⊂ A⇔ 1A ≤ 1B et 1B ≤ 1A ⇔ 1A = 1B

A = B ⇔ 1A = 1B

(d) Là aussi un tableau résumant les différents cas fait l’affaire. Soient A et B deux parties de E et x ∈ E :

x ∈ A x ∈ Ā 1A(x) 1Ā(x)

oui non 1 0

non oui 0 1

Il est clair que : ∀x ∈ E, 1Ā(x) = 1− 1A(x).

1Ā = 1− 1A

(e) On emploie la même méthode avec A et B deux parties de E et x ∈ E :

x ∈ A x ∈ B x ∈ A ∩B 1A(x) 1B(x) 1A(x)× 1B(x) 1A∩B(x)

oui oui oui 1 1 1 1

oui non non 1 0 0 0

non oui non 0 1 0 0

non non non 0 0 0 0

On constate que : ∀x ∈ E, 1A(x)1B(x) = 1A∩B(x), ainsi :

1A1B = 1A∩B

(f) Voici le tableau correspondant à la situation avec A et B deux parties de E et x ∈ E :

x ∈ A x ∈ B x ∈ A ∪B 1A(x) 1B(x) 1A(x) + 1B(x)− 1A(x)× 1B(x) 1A∪B(x)

oui oui oui 1 1 1 + 1− 1 = 1 1

oui non oui 1 0 1 + 0− 0 = 1 1

non oui oui 0 1 0 + 1− 0 = 1 1

non non non 0 0 0 + 0− 0 = 0 0

Ce qui démontre que :
1A + 1B − 1A1B = 1A∪B

(g) On a vu dans le cours que pour toutes parties X et Y de E, on a X \ Y = X ∩ Y . Considérons A et B
deux parties de E, on a :

1A\B = 1A∩B̄ = 1A1B̄ = 1A(1− 1B)

Ceci en utilisant les formules démontrées aux questions 3.(d) et 3.(e).

1A\B = 1A(1− 1B)
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4. (a) On a :

A∆B = (A ∪B) \ (B ∩A)

= (A ∪B) ∩ (B ∩A)
= (A ∪B) ∩ (B̄ ∪ Ā)
= [A ∩ (B̄ ∪ Ā)] ∪ [B ∩ (B̄ ∪ Ā)] en distribuant
= [(A ∩ B̄) ∪ (A ∩ Ā)] ∪ [(B ∩ B̄) ∪ (B ∩ Ā)] or A ∩ Ā = ∅ et B ∩ B̄ = ∅
= (A ∩ B̄) ∪ (B ∩ Ā)
= (A \B) ∪ (B \A)

Ce qui démontre que :

∀(A,B) ∈ P(E)2, A∆B = (A \B) ∪ (B \A)

(b) Soit A une partie de E, en utilisant la définition, on a :

A∆E = (A ∪ E) \ (A ∩ E) = E \A = Ā

et :
A∆∅ = (A ∪ ∅) \ (A ∩ ∅) = A \ ∅ = A

∀A ∈ P(E), A∆E = Ā et A∆∅ = A

(c) La formule A∆B = (A ∩ B̄) ∪ (B ∩ Ā) a été démontrée au cours de la question 4.(a). En utilisant cette
égalité, on a pour toutes parties A etB de E :

Ā∆B̄ = (Ā ∩ ¯̄B) ∪ (B̄ ∩ ¯̄A) = (Ā ∩B) ∪ (B̄ ∩A) = A∆B

∀(A,B) ∈ P(E)2, Ā∆B̄ = A∆B

(d) On va utiliser les différents résultats de la question 3. :

1A∆B = 1(A∪B)\(A∩B) définition de la différence symétrique

= (1A∪B)(1− 1A∩B) avec 3.(g)
= (1A + 1B − 1A1B)(1− 1A1B) en utilisant 3.(e) et 3.(f)
= 1A + 1B − 1A1B − 1A1A1B − 1B1A1B + 1A1B1A1B en développant
= 1A + 1B − 2× 1A1B en utilisant 3.(a)

= (1A − 1B)2

Ce qui démontre que :

∀(A,B) ∈ P(E)2, 1A∆B = (1A − 1B)2

(e) Soient A, B et C trois parties de E. D’après la question 3.(c) deux ensembles sont égaux si et seulement
si leurs fonctions caractéristiques sont égales, il s’agit donc de montrer que 1(A∆B)∆C = 1A∆(B∆C). Pour
cela, on va bien entendu se servir de la formule démontrée à la question précédente :

1A∆B∆C = (1(A∆B) − 1C)2

=
(

(1A − 1B)2 − 1C

)2

= (12
A + 12

B − 21A1B − 1C)2

= (1A + 1B − 21A1B − 1C)2

= 12
A + 12

B + 412
A1

2
B + 12

C + 21A1B − 41A1A1B − 41B1A1B − 21A1C − 21B1C + 41A1B1C

= 1A + 1B + 1C − 21A1B − 21A1C − 21B1C + 41A1B1C
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D’autre part :

1A∆(B∆C) = (1A − 1B∆C)2

=
(
1A − (1B − 1C)

)2

= (1A − 12
B − 12

C + 21B1C)2

= (1A − 1B − 1C + 21B1C)2

= 12
A + 12

B + 12
C + 412

B1
2
C − 21A1B − 21A1C + 41A1B1C + 21B1C − 412

B1C − 41B1
2
C

= 1A + 1B + 1C − 21A1B − 21A1C − 21B1C + 41A1B1C

Dans ces calculs, on a utilisé systématiquement que 12
A = 1A, 12

B = 1B et 12
C = 1C .

On a bien 1(A∆B)∆C = 1A∆(B∆C) et par suite :

La différence symétrique est associative

Cette question illustre l’importance de la la fonction caractéristique qui permet de démontrer une propriété
sur les ensembles juste par un calcul algébrique.

5. Démontrons la surjectivité de Γ puis son injectivité.

I Soit f ∈ F(E, {0, 1}), trouvons-lui un antécédent par Γ. On pose A = f−1({1}), c’est bien une partie de E
et on a pour tout x ∈ E :

Γ(A)(x) = 1⇔ 1A(x) = 1⇔ x ∈ A⇔ x ∈ f−1({1})⇔ f(x) = 1

Les assertions soulignées montrent que 1A = f puisque 1A et f sont à valeurs dans {0, 1}.
On a trouvé un antécédent à f par Γ, c’est A.

I Prenons A et B deux parties de E et supposons que Γ(A) = Γ(B), c’est-à-dire que 1A = 1B et d’après la
question 3.(c) cela donne A = B. Ce qui démontre que f est injective.

Γ est une bijection

6. I Soit B une partie de F . Soit x ∈ f−1(B), on a f(x) ∈ B. Ainsi dans ce cas 1f−1(B)(x) = 1 et 1B ◦ f(x) =
1B(f(x)) = 1.

I Soit x /∈ f−1(B), on a f(x) /∈ B. Ainsi dans ce cas 1f−1(B)(x) = 0 et 1B ◦ f(x) = 1B(f(x)) = 0.

Dans les deux cas, les fonctions 1f−1(B) et 1B ◦ f cöıncident

1f−1(B) = 1B ◦ f
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Exercice 2

1. La bijection la plus simple entre N et N∗ est :

ϕ1 : N → N∗
n 7→ n+ 1

Pour démontrer que ϕ est une bijection, on pourrait démontrer qu’elle est injective et surjective ou, plus
simplement, donner sa bijection réciproque :

ψ1 : N∗ → N
n 7→ n− 1

On a bien ϕ1 ◦ ψ1 = IdN∗ et ψ1 ◦ ϕ1 = IdN.

Voici une autre bijection :
ϕ2 : N → N∗

n 7→


n+ 1 si n /∈ {0, 1}
2 si n = 0
1 si n = 1

Sa bijection réciproque est :

ψ2 : N∗ → N

n 7→


n− 1 si n /∈ {1, 2}
0 si n = 2
1 si n = 1

N est en bijection avec N∗

2. Il est ici moins facile de trouver directement la bijection réciproque de f . Montrons qu’elle est injective puis
surjective. Dans la démonstration, on va utiliser que n est pair si et seulement si f(n) ≥ 0 et n est impair si et
seulement si f(n) < 0.

I Injectivité. Soient n et n′ deux entiers naturels tels que f(n) = f(n′), démontrons que n = n′. Étant donné
que f(n) = f(n′), d’après la remarque préliminaire, il est nécessaire que n et n′ aient la même parité.
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• Si n et n′ sont pairs alors f(n) = f(n′)⇔ n

2
=
n′

2
⇔ n = n′.

• Si n et n′ sont impairs alors f(n) = f(n′)⇔ −n+ 1

2
= −n

′ + 1

2
⇔ n = n′.

Ce qui démontre que f est injective.

I Surjectivité. Soit n ∈ Z, trouvons-lui un antécédent par f .

• Si n ≥ 0, on f(2n) = n ainsi 2n est un antécédent de n par f .

• Si n < 0, on a f(−1 − 2n) = −(−1− 2n) + 1

2
= n ainsi −1 − 2n est un antécédent de n par f .

Remarquons que cet antécédent est bien un entier naturel car n < 0 donc n ≤ −1 puisque n est un entier et
par suite −1− 2n ≥ 0.

Ainsi f est une bijection et aussi surprenant que cela puisse parâıtre :

N est en bijection avec Z

Au cours de cette question, on a d’ailleurs trouvé la bijection réciproque de f , c’est :

f−1 : Z → N

n 7→
{

2n si n ≥ 0
−1− 2n si n ≤ −1

3. (a) Soit m ∈ N∗, tentons de l’écrire sous la forme demandée.

I Si m = 1, on a : 1 = 20(2× 0 + 1) ainsi choisir k = 0 et n = 0 convient.

I Si m ≥ 2, on a déjà vu en cours que m peut s’écrire comme un produit de facteurs premiers. C’est-à-dire
qu’il existe des nombres premiers impairs p1, p2,..., pr et des entiers naturels k, a1, a2,..., ar avec r ∈ N
tels que :

m = 2kpa11 p
a2
2 ...p

ar
r

Notons que k peut être éventuellement nul dans le cas où m est un entier impair. Le produit pa11 p
a2
2 ...p

ar
r

est un entier impair puisque les nombres premiers mis en jeu sont impairs donc il existe n ∈ N tel que
pa11 p

a2
2 ...p

ar
r = 2n+ 1. Finalement, on a bien m = 2k(2n+ 1).

∀m ∈ N∗, ∃(n, k) ∈ N2, m = 2k(2n+ 1)

Vous pouvez, en guise d’exercice, démontrer ce résultat par récurrence forte.

(b) Soit m ∈ N trouvons-lui un antécédent par g. On a m + 1 ∈ N∗ on peut donc appliquer le résultat de la
question précédente à m+1, il existe (k, n) ∈ N2 tels que m+1 = 2k(2n+1) ou encore m = 2k(2n+1)−1.
C’est-à-dire g(k, n) = m.

g est surjective

(c) Donnons-nous (k, k′, n, n′) ∈ N4 et supposons que g(k, n) = g(k′, n′), c’est-à-dire :

2k(2n+ 1) = 2k
′
(2n′ + 1) (F)

Considérons plusieurs cas :

I si k > k′, on divise l’égalité par 2k
′

ce qui donne 2k−k
′
(2n + 1) = 2n′ + 1. Ceci est absurde puisque le

membre de gauche est pair et le membre de droite est impair.

I si k′ > k, on divise l’égalité par 2k ce qui donne 2n + 1 = 2k
′−k(2n′ + 1). Ceci est absurde puisque le

membre de gauche est impair et le membre de droite est pair.
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Nécessairement k = k′ et en divisant l’égalité (F) par 2k, on obtient 2n + 1 = 2n′ + 1 d’où n = n′.
Finalement (k, n) = (k′, n′).

g est injective

(d) La fonction g est surjective d’après la question 3.(b) et injective d’après la question 3.(c).

g est une bijection de N2 dans N

4. Considérons l’hypothèse de récurrence suivante valable pour p ∈ N∗ :

Hp : ”il existe une bijection entre Np et N”

I Initialisation. Pour p = 1, le résultat est évident puisque pour la bijection en question on peut choisir l’identité.
Remarquons d’ailleurs que la question 3. démontre que H2 est vraie.

I Hérédité. Fixons p ∈ N∗ et supposons avoir trouvé une bijection ϕp entre Np et N et démontrons qu’il existe
une bijection entre Np+1 et N. On pose :

ϕp+1 : Np+1 → N
(n1, n2, ..., np+1) 7→ g(ϕp(n1, ..., np), np+1)

Il reste à démontrer que ϕp+1 est bien une bijection.

Injectivité. Supposons que ϕp+1(n1, n2, ..., np+1) = ϕp+1(n′1, n
′
2, ..., n

′
p+1) avec (ni)1≤i≤p+1 ∈ Np+1 et

(n′i)1≤i≤p+1 ∈ Np+1. On a :
g(ϕp(n1, ..., np), np+1) = g(ϕp(n

′
1, ..., n

′
p), n

′
p+1)

L’application g est injective, ainsi l’égalité précédente implique que : ϕp(n1, ..., np) = ϕp(n
′
1, ..., n

′
p) et

np+1 = n′p+1. De plus, par hypothèse de récurrence, ϕp est injective donc n1 = n′1, n2 = n′2,..., np = n′p.
Finalement :

∀i ∈ J1, p+ 1K, ni = n′i

Ce qui démontre l’injectivité.

Surjectivité. Soit m ∈ N, trouvons-lui un antécédent par ϕp+1. Déjà, on sait, d’après la question 3. que
g est surjective, c’est-à-dire qu’il existe (k, n) ∈ N2 tels que g(k, n) = m. D’autre part ϕp est surjective donc il
existe (n1, ..., np) ∈ Np tels que ϕp(n1, ..., np) = k. On a :

ϕp+1(n1, n2, ..., np, n) = g(ϕp(n1, ..., np), n) = g(k, n) = m

L’application ϕp+1 est bien surjective.

Finalement l’application ϕp+1 est une bijection de Np+1 dans N, ce qui démontre que Hp+1 est vraie et achève
la récurrence.

∀p ∈ N∗, Np est en bijection avec N

5. Trouver une bijection entre N et Q revient à trouver une façon de compter les éléments de Q. Le schéma suivant
explique comment faire :
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Le point de coordonnées (p, q) correspond au rationnel
p

q
où (p, q) ∈ Z × N. On numérote les points comme

indiqué sur le dessin, on saute les rationnels que l’on a déjà pris en compte. Ainsi on définit ϕ : N → Q
une bijection. Par exemple ϕ(10) =

1

3
car 10 correspond au point de coordonnées (1, 3) sur le dessin. Le point

(3, 3), par exemple, n’a pas de numéro (c’est-à-dire d’antécédent par ϕ) car
3

3
=

1

1
que l’on a déjà compté

précédemment. Ceci explique que ϕ est injective, une même fraction n’ayant pas deux numéros. La fonction ϕ

est bien surjective puisque si r ∈ Q avec r =
p

q
et p et q premiers entre eux, le point de coordonnées (p, q) aura

un numéro.
N est en bijection avec Q

6. (a) On considère le réel au milieu du segment [a, b] : c =
a+ b

2
. On considère également le réel qui se place au

tiers de ce segment : d = a+
b− a

3
. Il y a deux cas :

• si x < c, on peut poser a′ = c et b′ = b.

• si x ≥ c, on peut poser a′ = a et b′ = d.

Pour comprendre ce raisonnement, il ne faut pas hésiter à faire un dessin.

(b) Un tel choix est possible, c’est la question précédente avec x = ϕ(n), a = an, b = bn, a′ = an+1 et b′ = bn+1.

(c) D’après la question précédente et par construction des suites, nous avons :

∀n ∈ N, a0 ≤ an ≤ an+1 < bn+1 ≤ bn ≤ b0

Ceci montre que la suite (an) est croissante et majorée par b0 et que la suite (bn) est décroissante et minorée
par a0. D’après le théorème de la limite monotone ces deux suites convergent.

(d) Déjà pour tout n ∈ N, on a an ≤ bn en passant à la limite dans cette inégalité, cela donne λ ≤ µ. D’autre
part, (an) étant une suite croissante et convergente, tous les termes de la suite sont inférieurs à la limite :

∀n ∈ N, an ≤ λ

Même raisonnement pour (bn) qui est décroissante et qui tend vers µ, ce qui permet d’affirmer que :

∀n ∈ N, µ ≤ bn



MPSI2 DM8 Mathématiques 2025-2026

Finalement, on a bien :

∀n ∈ N, an ≤ λ ≤ µ ≤ bn

(e) Comme l’application ϕ est une bijection, le réel λ possède un antécédent que l’on note p ∈ N, c’est-à-dire
ϕ(p) = λ. Par définition des suites, nous avons ϕ(p) /∈ [ap+1, bp+1], ce qui donne λ /∈ [ap+1, bp+1]. C’est
contradictoire avec la question précédente.

N et R ne sont pas en bijection

7. L’application f appartient à F(N,N) ainsi elle possède un antécédent par ϕ qui est une bijection. Il existe p ∈ N
tel que ϕ(p) = f . On examine la valeur de f(p) :

ϕ(p)(p) = f(p) = ϕ(p)(p) + 1

c’est clairement absurde.
N et F(N,N) ne sont pas en bijection


