- 1-Trouver une solution évidente de (E_1) : y' + y = 1.
- 2-Trouver une solution évidente de (E_2) : y' + y = x.
- 3-Trouver une solution évidente de (E_3) : $y' + y = x^2$.
- 4-Soient $(a,\lambda) \in \mathbb{K}^2$. Montrer que l'équation différentielle $(E): y'+ay=e^{\lambda x}$ admet une solution particulière de la forme : $x\mapsto Ce^{\lambda x}$ où $C\in\mathbb{K}$ est à déterminer.
- 5-Former une équation différentielle linéaire d'ordre 1 dont les solutions sur \mathbb{R} sont exactement les fonctions $f: x \mapsto \frac{\lambda + x}{1 + x^2}$ où $\lambda \in \mathbb{R}$.
- 6-Résoudre sur \mathbb{R} l'équation $(E): (1+x^2)y'' + 2xy' = 0.$

Chapitre 6 : Équations différentielles linéaires

AR6-1

1-Trouver une solution évidente de (E_1) : y' + y = 1.

Réponse : La fonction constante égale à 1 convient.

Chapitre 6 : Équations différentielles linéaires

AR6-1

2-Trouver une solution évidente de (E_2) : y' + y = x.

Réponse : La fonction $x \mapsto x - 1$ convient.

3-Trouver une solution évidente de (E_3) : $y' + y = x^2$.

Réponse : La fonction $x \mapsto x^2 - 2x + 2$ convient.

4-Soient $(a, \lambda) \in \mathbb{K}^2$ avec $\lambda \neq -a$. Montrer que l'équation différentielle $(E): y' + ay = e^{\lambda x}$ admet une solution particulière sur \mathbb{R} de la forme : $y_0: x \mapsto Ce^{\lambda x}$ où $C \in \mathbb{K}$ est à déterminer.

Réponse : On a :

$$y_0$$
 solution de (E) sur \mathbb{R} \Leftrightarrow $\forall x \in \mathbb{R}, \ \lambda C e^{\lambda x} + a C e^{\lambda x} = e^{\lambda x}$ \Leftrightarrow $\lambda C + a C = 1$ \Leftrightarrow $C = \frac{1}{\lambda + a}$

Une solution particulière de (E) est $y_0: x \mapsto \frac{1}{\lambda + a}e^{\lambda x}$.

5-Former une équation différentielle linéaire d'ordre 1 dont les solutions sur \mathbb{R} sont exactement les fonctions $f: x \mapsto \frac{\lambda + x}{1 + x^2}$ où $\lambda \in \mathbb{R}$.

Réponse : Pour tout x réel, on a : $(1+x^2)f(x) = \lambda + x$. En dérivant cette relation, il vient :

$$\forall x \in \mathbb{R}, \ 2xf(x) + (1+x^2)f'(x) = 1$$

Considérons l'équation différentielle linéaire :

(E) : $y' + \frac{2x}{1+x^2}y = \frac{1}{1+x^2}$. Avec la méthode vue en cours, on trouve que les solutions de (E) sont bien les fonctions définies sur $\mathbb R$ par :

$$x \mapsto \frac{\lambda}{1+x^2} + \frac{x}{1+x^2}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

6-Résoudre sur \mathbb{R} l'équation (E) : $(1+x^2)y'' + 2xy' = 0$.

Réponse : On note $u: x \mapsto 1 + x^2$ définie sur \mathbb{R} . Pour $x \in \mathbb{R}$, on a :

$$(1+x^2)y'' + 2xy' = 0 \quad \Leftrightarrow \quad u(x)y''(x) + 2xy'(x) = 0$$

$$\Leftrightarrow \quad (uy')'(x) = 0$$

$$\Leftrightarrow \quad \exists \lambda \in \mathbb{R}, \ uy' : x \mapsto \lambda$$

$$\Leftrightarrow \quad \exists \lambda \in \mathbb{R}, \ y' : x \mapsto \frac{\lambda}{1+x^2}$$

$$\Leftrightarrow \quad \exists (\lambda, \mu) \in \mathbb{R}^2, \ y : x \mapsto \lambda \mathsf{Arctan}(x) + \mu$$