
MPSI2 DM10 Mathématiques Pour le mardi 9 décembre

Exercice 1

Le but de cet exercice est de démontrer puis d’appliquer le théorème de Cesàro :

Théorème de Cesàro :

Soit (un)n∈N∗ une suite réelle. On définit, à partir de (un), une nouvelle suite dont le terme général est donné

par ∀n ∈ N∗, vn =
1

n

n∑
k=1

uk. Si (un) converge vers un réel l, alors (vn) converge vers l.

Toutes les suites considérées dans cet exercice sont définies à partir de l’indice n = 1.

1. On suppose dans cette question que lim
n→+∞

un = 0.

(a) On fixe ε > 0 un réel, montrer qu’il existe n0 ∈ N∗ tel que pour tout n ≥ n0, on ait :∣∣∣ 1
n

n∑
k=n0

uk

∣∣∣ ≤ ε

2

(b) Montrer qu’il existe n1 ∈ N∗ tel que pour tout n ≥ n1, on ait :

∣∣∣ 1
n

n0−1∑
k=1

uk

∣∣∣ ≤ ε

2

(c) En déduire que la suite (vn) tend vers 0.

2. En se ramenant au cas particulier précédent, démontrer le théorème de Cesàro. Donner un contre-exemple
montrant que la réciproque du théorème est fausse.

3. Montrer que si la suite (un) tend vers +∞ alors (vn) tend vers +∞.

4. Voyons à présent quelques applications du théorème de Cesàro.

(a) Soit (un) une suite telle que lim
n→+∞

(un+1 − un) = l où l ∈ R∗. Montrer que lim
n→+∞

un
nl

= 1.

(b) Soit (un) une suite à valeurs dans R∗+ telle que lim
n→+∞

un+1

un
= l ∈ R∗+. Montrer que la suite (u

1
n
n ) converge

aussi vers l. On pourra considérer la suite (ln(un)).

Les deux questions qui suivent sont des applications de la question 4.(b).

(c) Etudier la convergence de la suite définie pour tout n ≥ 1 par : wn =
n∏

k=1

(
1 +

1

k

) 1
n

.

(d) Déterminer lim
n→+∞

(n!)
1
n

n
.



MPSI2 DM10 Mathématiques Pour le mardi 9 décembre

Exercice 2

Nous allons démontrer une version du théorème du point fixe de Banach-Picard qui s’énonce ainsi :

Théorème de Banach-Picard :

Soit I un intervalle fermé, k ∈ [0, 1[ et f : I → I une fonction vérifiant :

∀(x, y) ∈ I2, |f(x)− f(y)| ≤ k|x− y|

alors la fonction f admet un unique point fixe. De plus, toute suite (un) telle que u0 ∈ I et pour tout n ∈ N,
un+1 = f(un) converge vers ce point fixe.

1. Justifier que la suite (un) de l’énoncé est correctement définie.

2. Montrer que pour tout n ∈ N, on a |un+1 − un| ≤ kn|u1 − u0|.

3. Montrer que pour tout n ∈ N, on a |un − u0| ≤
1

1− k
|u1 − u0|. En déduire que la suite (un) est bornée.

4. Justifier l’existence d’une extractrice ϕ telle que (uϕ(n)) converge vers un réel l appartenant à I.

5. Grâce à une majoration bien choisie de |f(l)− l|, montrer que l est un point fixe de f .

6. Montrer que pour tout n ∈ N, |un − l| ≤ kn|u0 − l|. En déduire que (un) converge vers l.

7. Montrer que le point fixe de f trouvé à la question précédente est unique.

Un point fixe d’une fonction f est un réel a tel que f(a) = a.


