
MPSI2 Exercices du cours 4 ITC

1 Sans faire de preuve précise, expliquer si les boucles suivantes se terminent.

1.

1 for i in range(10 ∗∗ 30):
2 print(i)

C’est une boucle for, la terminaison est assurée même si le temps mis sera long.

2.

1 i = 0
2 while i < 10:
3 i = i − 1

La variable i vaut initialement 0 et diminue de 1 à chaque passage dans la boucle, elle
n’atteindra jamais la valeur 10 : la boucle est infinie.

3.

1 i = 0
2 while True:
3 i = i + 1
4 print(i)

La commande while True donne une boucle infinie.

4.

1 n = 100
2 i = 0
3 while i < n:
4 i = i + 2
5 n = n + 1

La boucle se termine, la quantité n− i est un variant de boucle. En effet, à chaque passage
dans la boucle, i augmente de 2 et n augmente de 1 donc n− i diminue de 1.

5.

1 n = 10
2 i = 0
3 while i < n:
4 i = i + 1
5 n = n + 1

La boucle est infinie, la condition i < n sera toujours vérifiée car n− i reste égal à 10.

6.

1 i = 1
2 while (i < 10) or (i % 2 == 1):
3 i = i +2

La variable i vaut initialement 1 et on lui ajoute 2 à chaque passage dans la boucle, ainsi
elle reste impaire. La condition de la boucle while sera donc toujours vérifiée.

2025-2026

MPSI2 Exercices du cours 4 ITC

7.

1 x = 1
2 while x / 2 >0:
3 x = x / 2

Les nombres flottants positifs que l’on peut représenter en Python vont de 2.2250738585072014×
10−308 à 1.7976931348623157× 10308. Ainsi, si l’on programme cette boucle en Python, elle
se termine.

8.

1 import random as rd
2 n = rd.randint(10 ∗∗ 300, 10 ∗∗ 400)
3 while n > 1:
4 if n % 2 == 0:
5 n = n // 2
6 else :
7 n = 3 ∗ n + 1

On ne sait pas si la boucle se termine. La conjecture de Syracuse affirme que cette boucle
se termine pour tout entier naturel n mais cette assertion n’est pas démontrée à ce jour.

2

1. En testant quelques valeurs, on conjecture que cette fonction renvoie 22
n
.

2. Un variant de boucle est n−i. En effet, c’est bien un entier naturel qui décroit strictement
à chaque passage dans la boucle car i est incrémenté de 1 et n reste fixe. On en déduit qu’il
n’y aura qu’un nombre fini de passage dans la boucle et que la fonction se termine.

3. On note ri la valeur de r à la fin de la i-ème itération de la boucle avec par convention r0 = 2.
Démontrons que la propriété ri = 22

i
est un invariant de boucle pour cette fonction.

• Initialement, on a r0 = 2 ainsi 22
i

= 22
0

= 21 = 2 comme voulu. La propriété est vérifiée
avant l’exécution de la boucle.

• Soit i ∈ J1, nK, on suppose que la propriété est vraie avant la i-ème itération, c’est-à-dire

que ri−1 = 22
i−1

. À la fin de la i-ème itération, on a :

ri = ri−1 × ri−1 =
(

22
i−1

)2
= 22

i−1×2 = 22
i

Si la propriété est vraie avant la i-ème itération alors elle est vraie à la fin de la i-ème
itération. On a bien un invariant de boucle.

La fonction s’arrête à la n-ième itération de la boucle et à ce moment là, on a bien rn = 22
n
.

2025-2026

MPSI2 Exercices du cours 4 ITC

3 • Si p ≤ 0, on ne rentre pas dans la boucle et le programme se termine.

• Si p > 0, on rentre dans la boucle while. On ne peut pas choisir p comme variant de
boucle car ce n’est pas une quantité strictement décroissante à chaque passage dans la boucle.
On va démontrer que 2p+ 3c est un variant de boucle, déjà il est clair que c’est un entier naturel.
Notons pi et ci les variables p et c après l’itération numéro i de la boucle.

I Si ci = 0 alors pi+1 = pi − 2 et ci+1 = 1 d’où :

2pi+1 + 3ci+1 = 2pi − 4 + 3 = 2pi − 1 < 2pi + 3ci

I Si ci = 1 alors pi+1 = pi + 1 et ci+1 = 0 d’où :

2pi+1 + 3ci+1 = 2pi = 2pi + 2 < 2pi + 3 = 2pi + 3ci

Dans tous les cas la quantité 2pi + 3ci diminue strictement à chaque itération de la boucle,
ainsi la boucle se termine.

4

1. Cette fonction met en jeu une boucle for qui se termine bien.

2. On choisit comme invariant de boucle, la propriété suivante valable pour i ∈ J0, nK.

Pi : après le passage numéro i dans la boucle la valeur de p est i!

• Cette propriété est vraie avant de rentrer dans la boucle puisqu’initialement p = 1 = 0!.

• On suppose que la propriété est vraie après le passage numéro i dans la boucle, c’est-à-dire
qu’à ce moment-là p vaut i!. Lors de la boucle numéro i + 1, p est multiplié par i + 1, ainsi
à la fin de la boucle la valeur de p est (i + 1)× i! = (i + 1)!, ce qu’il fallait démontrer.

• À la sortie de la boucle while, c’est-à-dire pour i = n, on a p = n! comme voulu.

5

1. Ce programme affiche an, cela ne saute pas aux yeux en regardant les lignes de commande
mais on peut l’intuiter en testant quelques valeurs

2. Déjà, il est clair que ce programme se termine : notre variant de boucle est N qui est
un entier naturel positif et qui décrôıt strictement à chaque passage dans la boucle. Ceci se
démontre sans difficulté en raisonnant selon la parité de N . L’algorithme se termine.

3. On considère la propriété :

P : ”AN ×R = an”

• Initialisation. Cette propriété est vraie avant de rentrer dans la boucle puisqu’au
moment de l’initialisation A = a, N = n et R = 1.

• Hérédité. Supposons la propriété vraie avant l’exécution d’une boucle. Il y a trois
cas à considérer :

I Si N = 0, on sort de la boucle et les valeurs des paramètres restent inchangées.

I Si N est pair, alors A est transformé en A′ = A2, N est changé en N ′ =
N

2
et R′ = R reste inchangé. On a alors :

A′N
′ ×R′ = (A2)

N
2 ×R = AN ×R = an

2025-2026

MPSI2 Exercices du cours 4 ITC

I Si N est impair, alors A est inchangé A′ = A, N est changé en N ′ = N − 1

et on a R′ = R×A. On a alors :

A′N
′ ×R′ = AN−1 ×R×A = AN ×R = an

Dans tous les cas notre propriété reste vérifiée à la fin de l’exécution d’une boucle.

• Conclusion. Lorsque l’on sort de la boucle, on a nécessairement N = 0 et l’on sait
que notre propriété P reste encore vérifiée, c’est-à-dire :

AN ×R = an ⇔ R = an

Ce qui démontre que le programme affiche bien an à la fin.

6

1. On propose l’algorithme suivant où n est l’entier naturel que l’on veut tester :

1 while n > 70:
2 a = int(str (n)[−1]) #a est le chiffre des unités de n
3 n = ((n − a) // 10) −2 ∗ a #le pas de l’algorithme
4 print(n)

2. Pour démontrer que l’algorithme se termine, il suffit d’exhiber un variant de boucle. L’entier
naturel n décrôıt strictement à chaque itération de la boucle, en effet si l’on note n′ la valeur

de n en fin de boucle, on a : n′ ≤ 1

10
n < n. La boucle se termine.

3. Notons n′ la valeur prise par l’entier n en fin de boucle. On va démontrer qu’un invariant
de boucle est : ”7|n⇔ 7|n′”. Cette propriété justifiera la conformité de notre algorithme et
donc la validité de la méthode pour déterminer si un entier est divisible par 7.

Si n = 10q + r où q et r sont le quotient et le reste de la division euclidienne de n par 10.

On a : n′ =
n− r

10
− 2r =

n− 21r

10
, ce qui donne :

7|n⇔ 7|n− 21r ⇔ 7|n− 21r

10
= n′ car 7 et 10 sont premiers entre eux

2025-2026

