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Problème 1

A-Préliminaires et premiers exemples

Le but de cette partie est de se familiariser avec les notations introduites en étudiant tout d’abord un exemple de
suite qui n’est pas dense dans [0, 1[. Dans la question 3., on met en évidence un critère qui garantit que certaines
suites, dites à croissance lente, sont denses dans [0, 1[.

1. Pour tout x ∈ R, on a :

x− 1 < bxc ≤ x⇔ −x ≤ −bxc < 1− x⇔ 0 ≤ x− bxc < 1

∀x ∈ R, M(x) ∈ [0, 1[

2. (a) Soit x ∈ Z. Pour tout n ∈ N, on a nx ∈ Z, d’où :

un = M(nx) = nx− bnxc = nx− nx = 0

Si x ∈ Z, alors (un) est la suite nulle

(b) i. On a les premiers termes de la suite un :

n 0 1 2 3 4 5 6 7 8 9 10 11

un 0 0, 4 0, 8 0, 2 0, 6 0 0, 4 0, 8 0, 2 0, 6 0 0, 4

La suite (un) semble être périodique, avec une période de longueur 5 : 0,
2

5
,

4

5
,

1

5
,

3

5
.

ii. Soit n ∈ N, il s’agit de démontrer que un+q = un. On a :

un+q = (n+ q)
p

q
−
⌊
(n+ q)

p

q

⌋
= n

p

q
+ p−

⌊
n
p

q
+ p
⌋

= n
p

q
+ p−

⌊
n
p

q

⌋
− p = n

p

q
−
⌊
n
p

q

⌋
= un

iii. La suite (un) étant périodique de période q, elle prend au plus q valeurs distinctes (exactement q
valeurs si p et q sont premiers entre eux). Il est clair qu’il est possible de trouver, dans l’intervalle

[0, 1[, q+1 intervalles non triviaux et disjoints par exemple la famille d’intervalles
[ 2i

2(q + 1)
,

2i+ 1

2(q + 1)

]
où 0 ≤ i ≤ q.
Etant donné que la suite (un) prend au plus q valeurs, il y aura l’un de ces q + 1 intervalles qui ne
contiendra pas de terme de la suite (un). Ce qui démontre que (un) n’est pas dense dans [0, 1[.

Si x ∈ Q alors la suite (M(nx)) n’est pas dense dans [0, 1[

La réciproque de cette proposition sera démontrée à la question 2. de la partie B.

3. (a) i. La suite (n2) est croissante et tend vers +∞ mais (n+ 1)2 − n2 = 2n+ 1 ne tend pas vers 0.

(n2) n’est pas à croissance lente

ii. La suite (
√
n) est croissante et tend vers +∞. Pour tout n ∈ N, en utilisant la quantité conjuguée, il

vient :
√
n+ 1−

√
n =

(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
−→

n→+∞
0

(
√
n) est à croissance lente
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iii. La suite (ln(n))n≥1 est croissante et tend vers +∞. Pour tout n ∈ N, on a :

ln(n+ 1)− ln(n) = ln
(n+ 1

n

)
= ln

(
1 +

1

n

)
−→

n→+∞
0

(ln(n))n≥1 est à croissance lente

(b) i. C’est exactement la définition de lim
n→+∞

(an+1 − an) = 0, étant donné que a < b, on a bien ε > 0.

ii. La suite (an) tend vers +∞, d’où l’existence de N ′ ≥ N tel que uN ′ ≥ A+ 1.

iii. L’idée est la suivante : aN < A par définition de A et aN ′ ≥ A+ 1 avec N ′ ≥ N . Or, à partir du rang
N , la différence entre deux termes consécutifs de la suite (an) est inférieure ou égale à ε, la suite étant
croissante, il y aura nécessairement un terme de la suite qui va tomber dans l’intervalle [A+ a,A+ b]
puisque cet intervalle est de longueur 2ε. Ainsi il existe n0 ∈ N tel que an0 ∈ [A+ a,A+ b].

Vous aurez remarqué que l’hypothèse de croissance de la suite (an) clarifie la situation mais n’est pas
nécessaire.

iv. Comme A est un entier, que 0 ≤ a < b ≤ 1 et que an0 ∈ [A+ a,A+ b], on a ban0c = A. Ainsi :

A+ a ≤ an0 ≤ A+ b⇔ A+ a−A ≤ an0 − ban0c ≤ A+ b−A⇔ a ≤M(an0) ≤ b

En résumé, pour tous (a, b) ∈ [0, 1[2 tels que 0 ≤ a < b < 1, on a trouvé n0 ∈ N tel que M(an0) ∈ [a, b],
ceci est la définition de :

(M(an)) est dense dans [0, 1[

v. D’après la question 3.(a), les suites (
√
n) et (ln(n))n≥1 sont à croissance lente, ainsi (M(

√
n)) et

(M(ln(n))) sont deux suites denses dans [0, 1[.

B-Sous-groupes additifs de R

Cette partie est consacrée à la caractérisation des sous-groupes additifs de R, c’est une partie assez technique qui
demande une bonne mâıtrise de la notion de borne inférieure. Le résultat démontré sera utilisé pour poursuivre l’étude
de la densité de certaines suites.

1. Vérifions les conditions requises pour avoir un sous-groupe.

I Par définition : αZ ⊂ R.

I L’élément neutre de l’addition s’écrit 0 = α× 0 avec 0 ∈ Z, donc 0 ∈ αZ.

I Soient (a, b) ∈ (αZ)2, il existe (p, q) ∈ Z2 tels que : a = αp et b = αq. Ainsi :

a− b = α(p− q) ∈ αZ, car p− q ∈ Z

αZ est un sous-groupe additif de R
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2. C’est du cours, Q est un sous-groupe additif de R car :

I Q ⊂ R.

I 0 ∈ Q.

I Si (r, r′) ∈ Q2 alors r − r′ ∈ Q.

Montrons que Q est dense dans R, pour cela donnons-nous (c, d) ∈ R2 avec c < d. Comme R est archimédien,
il existe N ∈ N∗ tel que N(d − c) > 1. L’intervalle [cN, dN ] est de longueur supérieure à 1 d’où l’existence de

p ∈ Z tel que cN ≤ p ≤ dN . Ainsi le rationnel
p

N
∈ [c, d], ce qui démontre le résultat.

Q est un sous-groupe additif dense dans R

3. (a) Le sous-groupe H n’étant pas réduit au singleton {0}, il existe x ∈ H tel que x 6= 0. Si x > 0 alors H ∩R∗+
est non vide. Si x < 0, on a −x ∈ H puisque H est stable par passage à l’opposé et dans ce cas aussi
H ∩ R∗+ est non vide. D’après la propriété de la borne inférieure, étant donné que H ∩ R∗+ est une partie
non vide de R et minorée par 0, elle possède une borne inférieure.

a = inf(H ∩ R∗+)

(b) Le réel 0 est un minorant de H ∩ R∗+ et par définition de la borne inférieure, a est le plus grand des
minorants de H ∩ R∗+, d’où :

a ≥ 0

4. (a) Comme a > 0, on a 2a > a ainsi 2a, qui est supérieur strictement au plus grand des minorants de H ∩R∗+,
n’est pas un minorant de H ∩ R∗+. Il existe x1 ∈ H ∩ R∗+ tel que x1 < 2a et comme a est un minorant de
H ∩ R∗+, il vient :

a ≤ x1 < 2a

(b) C’est exactement le même raisonnement qu’à la question précédente, si x1 > a, alors x1 n’est pas un
minorant de H ∩ R∗+, donc il existe x2 ∈ H ∩ R∗+ tel que :

a ≤ x2 < x1 < 2a

(c) D’après l’inégalité précédente, on a : 0 < x1 − x2 < 2a − a = a. Or x1 − x2 est un élément de H puisque
(x1, x2) ∈ H2 et H est un sous-groupe de R. Finalement x1 − x2 ∈ H ∩ R∗+ mais x1 − x2 < a, ceci est
absurde puisque a est un minorant de H ∩ R∗+.

En résumé, on a x1 ≥ a mais x1 > a est absurde, c’est donc que x1 = a et par suite :

a ∈ H

(d) Soit k ∈ Z, montrons que ak ∈ H.

I Si k = 0, on a 0 ∈ H car H est un sous-groupe de R.

I Si k ≥ 1, on a ak = a+ a...+ a︸ ︷︷ ︸
k fois

, donc ak est bien un élément de H puisque a ∈ H et H est stable par

somme.

I Si k ≤ −1, on a d’après le calcul ci-dessus a(−k) ∈ H et comme H est stable par passage à l’opposé cela
implique que ak ∈ H.

aZ ⊂ H
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(e) Pour tout x ∈ H, on a :

x

a
− 1 <

⌊x
a

⌋
≤ x

a
⇔ x− a < a

⌊x
a

⌋
≤ x

⇔ −x+ a > −a
⌊x
a

⌋
≥ −x

⇔ a > x− a
⌊x
a

⌋
≥ 0

Ce qui démontre que x − a
⌊x
a

⌋
∈ [0, a[, d’après la question précédente : a

⌊x
a

⌋
∈ aZ ⊂ H. Comme H est

un sous-groupe de R, on a x − a
⌊x
a

⌋
∈ H ∩ R+ et cette expression est inférieure strictement à a, d’où :

x− a
⌊x
a

⌋
= 0 et par suite x = a

⌊x
a

⌋
∈ aZ.

(f) Les deux questions précédentes démontrent que :

aZ = H

5. (a) On a d− c > 0 = a donc d− c n’est pas un minorant de H ∩ R∗+. Ainsi :

il existe x ∈ H ∩ R∗+, tel que 0 < x < d− c

(b) L’idée est la suivante : les multiples entiers de x consécutifs sont à une distance inférieure strictement à
d− c les uns des autres. Il y a donc au moins l’un de ces multiples qui tombe dans l’intervalle [c, d]. Pour
donner une rédaction plus précise, on considère les différents cas suivants :

I Si c ≤ 0 ≤ d, 0 ∈ [c, d] ∩H.

I Si 0 ≤ c < d, on pose A = {k ∈ N, kx ≥ d}. L’ensemble A est une partie non vide de N car x > 0 et R
est archimédien, donc A possède un minimum que nous notons k0. On a k0x ≥ d et (k0 − 1)x < d puisque
k0 − 1 /∈ A.

D’autre part :
k0x ≥ d⇔ k0x− x ≥ d− x > c

Ce qui démontre que (k0 − 1)x ∈ [c, d] ∩H.

I Si c < d ≤ 0, d’après l’étude précédente : [−d,−c]∩H 6= ∅. Comme H est stable par passage à l’opposé
on a également : [c, d] ∩H 6= ∅.
Dans tous les cas :

[c, d] ∩H 6= ∅

6. Dans la question précédente, on a démontré que si a = 0 alors H est dense dans R. Dans la question 4., on a
démontré que si a > 0 alors H est monogène. Enfin si H = {0}, alors H = 0Z et c’est également un groupe
monogène.

Tout sous-groupe additif de R est dense dans R ou monogène
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C-Application à l’étude de la suite (cos(n))

Dans cette partie, on démontre que la suite (cos(n)) est dense dans [−1, 1], ce qui implique que tous les réels de
cet intervalle sont des valeurs d’adhérence de la suite.

1. (a) Pour tout (x, y) ∈ R2, on a :

cos(x) + cos(y) = 2 cos
(x+ y

2

)
cos
(x− y

2

)
En appliquant cette formule à x = n+ 1 et y = n− 1, il vient :

∀n ≥ 1, un+1 + un−1 = 2un cos(1)

(b) Puisque l’on a supposé que (un) tend vers l, les suites (un+1) et (un−1)n≥1 convergent également vers l, en
passant à la limite dans la relation précédente, on a : 2l = 2l cos(1). Etant donné que cos(1) 6= 0, on a :

l = 0

(c) La relation cos(2x) = 2 cos2(x)− 1 est valable pour tout x réel, appliquée à x = n cela donne :

u2n = 2u2n − 1

(d) On passe à la limite dans la relation précédente, on obtient : l = 2l2−1. Sachant que l = 0, on a l’absurdité
recherchée, ce qui démontre que :

(cos(n)) diverge

2. (a) On vérifie les conditions requises :

I Par définition : Z + 2πZ ⊂ R.

I 0 ∈ Z + 2πZ.

I Soit (r, r′) ∈ (Z + 2πZ)2, il existe (p, q, p′, q′) ∈ Z4 tels que r = p+ 2πq et r′ = p′ + 2πq′. Ainsi :

r − r′ = (p+ 2πq)− (p′ + 2πq′) = (p− q) + 2π(p′ − q′) ∈ Z + 2πZ

Z + 2πZ est un sous-groupe additif de R

(b) Supposons que Z + 2πZ s’écrive αZ où α ∈ R. On a :

1 ∈ Z + 2πZ (p = 1, q = 0), donc ∃k ∈ Z∗, tel que 1 = αk

2π ∈ Z + 2πZ (p = 0, q = 1), donc ∃k′ ∈ Z∗, tel que 2π = αk′

Ceci implique, en faisant le quotient, que π =
k′

2k
∈ Q ce qui est absurde.

D’après le résultat démontré dans la partie B, comme Z + 2πZ est un sous-groupe additif de R qui n’est
pas monogène, c’est que :

Z + 2πZ est dense dans R

(c) Si x ∈ Z + 2πZ, il existe (p, q) ∈ Z2 tel que x = p+ 2πq, la fonction cosinus étant 2π-périodique et paire,
il vient :

cos(x) = cos(p+ 2πq) = cos(p) = cos(|p|) ∈ Y car |p| ∈ N

∀x ∈ Z + 2πZ, cos(x) ∈ Y
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(d) Soit (c, d) ∈ [−1, 1]2 tels que c < d, montrons qu’il existe y ∈ Y tel que c ≤ y ≤ d. La fonction arccosinus
est strictement décroissante, donc arccos(d) < arccos(c). À la question 2.(b), nous avons démontré que
Z + 2πZ est dense dans R, ainsi il existe x ∈ Z + 2πZ tel que arccos(d) ≤ x ≤ arccos(c). Par suite :
c ≤ cos(x) ≤ d, or cos(x) ∈ Y , on a bien démontré que :

(cos(n)) est dense dans [−1, 1]

3. Pour tout n ∈ N∗ fixé, on a l’intervalle
[
l− 1

n
, l+

1

n

]
qui peut être partagé en un nombre quelconque d’intervalles

non triviaux disjoints (une description explicite d’un tel partage a été faite à la question 2.(b).iii de la partie
A), comme Y est dense dans [−1, 1], la suite (cos(n)) visite chacun de ces intervalles, ainsi :

∀n ∈ N∗,
[
l − 1

n
, l +

1

n

]
∩ Y est infini

On va construire l’extractrice ϕ par récurrence :

I On choisit pour ϕ(0) un entier quelconque.

I Supposons avoir donné ϕ(0), ..., ϕ(n) pour un entier naturel n. L’ensemble
[
l − 1

n+ 1
, l +

1

n+ 1

]
∩ Y est

infini, il existe ainsi k > ϕ(n) tel que cos(k) ∈
[
l − 1

n+ 1
, l +

1

n+ 1

]
. On pose ϕ(n+ 1) = k. Par construction,

l’application ϕ est strictement croissante et pour tout n ≥ 1 : cos(ϕ(n)) ∈
[
l − 1

n
, l +

1

n

]
ce qui démontre que :

lim
n→+∞

cos(ϕ(n)) = l

D-Etude de la suite (M(nx))

Dans cette partie, on démontre que (M(nx)) est dense dans [0, 1[ si et seulement si x est irrationnel.

1. C’est exactement la même démarche qu’aux questions 2.(a) et 2.(b) de la partie C en remplaçant 2π par x qui
est également irrationnel.

Z + xZ est dense dans R

2. Donnons-nous 0 ≤ a < b < 1 et tentons de trouver n0 ∈ N tel que M(n0x) ∈ [a, b]. D’après la question
précédente, il existe p+ xq ∈ [a, b] avec (p, q) ∈ Z2. C’est-à-dire que xq ∈ [a− p, b− p], donc que M(xq) ∈ [a, b].
On peut toujours se ramener à prendre q ≥ 0, puisque Z + xN est également dense dans R, en adaptant la
démonstration proposée à la question 5. de la partie B.

Ainsi en prenant q = n0, on a bien M(n0x) ∈ [a, b]. Ce qui démontre en recoupant le résultat obtenu avec celui
de la question 2. de la partie A, que :

x ∈ R \Q⇔ (M(nx)) dense dans R

3. (a) Raisonnons par l’absurde en supposant que log(2) =
p

q
avec (p, q) ∈ (N∗)2. On applique à cette relation

la fonction réciproque de log : x 7→ 10x cela donne : 2 = 10
p
q . Ceci implique que 2q = 10p = 2p × 5p, par

unicité de la décomposition en facteurs premiers, il est nécessaire que p = 0, ce qui est absurde.

log(2) est irrationnel
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(b) Soit a un entier naturel non nul d’écriture en base 10 : a = [apap−1...a1a0] où p ∈ N et où les (ai)0≤i≤p
sont des chiffres. L’écriture en base 10 du nombre 2n commence par a si et seulement s’il existe un entier
naturel k tel que :

a× 10k ≤ 2n < (a+ 1)× 10k ⇔ k + log(a) ≤ n log(2) < k + log(a+ 1)

C’est-à-dire que :

log(a)− blog(a)c ≤ n log(2)− bn log(2)c < log(a+ 1)− blog(a+ 1)c (?)

sauf dans le cas où a+ 1 est une puissance de 10 le membre de droite devant être alors remplacé par 1.

Comme log(2) est irrationnel, la suite M(n log(2)) est dense dans [0, 1[, il est ainsi possible de trouver un
entier n vérifiant la condition (?) et par suite 2n commence par la séquence a.

Pour toute séquence de chiffres, il existe une puissance de 2 commençant par cette séquence

E-Nombre d’or et nombres de Pisot

On démontre notamment dans cette partie que les puissances du nombre d’or sont de plus en plus proches des
entiers.

1. On suit l’énoncé en utilisant une récurrence double. On considère l’hypothèse de récurrence valable pour n ∈ N :

Hn : ϕn +
1

(−ϕ)n
∈ N

I On a ϕ0 +
1

(−ϕ)0
= 2 ∈ N. D’autre part :

ϕ+
1

−ϕ
=

1 +
√

5

2
− 2

1 +
√

5
=

1 +
√

5

2
− 2(1−

√
5)

(1 +
√

5)(1−
√

5)
=

1 +
√

5

2
−
√

5− 1

2
= 1

Ainsi H0 et H1 sont vérifiées.

I Soit n ∈ N, on suppose que Hn et Hn+1 sont vraies, on a :(
ϕn+1 +

1

(−ϕ)n+1

)(
ϕ+

1

−ϕ

)
= ϕn+2 +

1

(−ϕ)n+2
− ϕn − 1

ϕn

C’est-à-dire que :

ϕn+2 +
1

(−ϕ)n+2
=
(
ϕn+1 +

1

(−ϕ)n+1

)
︸ ︷︷ ︸

∈N avec Hn+1

(
ϕ+

1

−ϕ

)
︸ ︷︷ ︸

=1

+ ϕn +
1

ϕn︸ ︷︷ ︸
∈N avec Hn

Ce qui démontre l’hypothèse au rang n+ 2 et achève la récurrence.

∀n ∈ N, ϕn +
1

(−ϕ)n
∈ N

2. Au cours de la question précédente, nous avons vu que : − 1

ϕ
=

1−
√

5

2
. Etant donné que 2 <

√
5 < 3, on a∣∣∣− 1

ϕ

∣∣∣ < 1 et par suite lim
n→+∞

(
− 1

ϕ

)n
= 0.

lim
n→+∞

1

(−ϕ)n
= 0
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3. Pour tout n ∈ N, notons bn = ϕn +
1

(−ϕ)n
qui est un entier d’après la question 1.(a). On a, pour n ∈ N :

vn = ϕn − bϕnc =
(
bn −

1

(−ϕ)n

)
−
⌊
bn −

1

(−ϕ)n

⌋
En passant à la limite quand n tend vers +∞ il vient : lim

n→+∞
v2n = 1 et lim

n→+∞
v2n+1 = 0. Ainsi, par définition

de la limite :

∃N ∈ N, ∀n ≥ N, vn ∈
[
0,

1

4

]
∪
[3

4
, 1
[

On utilise le principe vu à la question 2.(b)iii. de la partie A, en partageant l’intervalle
]1

4
,
3

4

[
en N+1 intervalles

disjoints.

Les N premiers termes de la suite ne peuvent visiter chacun des N+1 intervalles disjoints et les termes d’indices

supérieurs à N n’appartiennent pas à
]1

4
,
3

4

[
. Ce qui montre que (vn) n’est pas dense dans [0, 1[.

(vn) n’est pas dense dans [0, 1[
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Problème 2

1. Soit a ∈ R, Ia est inclus dans F(R,R) par définition. Il reste à vérifier les trois conditions requises pour que Ia
soit un idéal :

I i) Notons θ la fonction nulle de R dans R, on a θ(a) = 0 ainsi θ ∈ Ia.
I ii) Soient (f, g) ∈ I2a , c’est-à-dire que f(a) = g(a) = 0. On a (f + g)(a) = 0 ainsi f + g ∈ Ia.
I iii) Soit λ ∈ F(R,R) et f ∈ Ia, c’est-à-dire que f(a) = 0. On a (λf)(a) = λ(a)f(a) = 0 ainsi λf ∈ Ia.

Ia est un idéal de F(R,R)

2. (a) Soit n ∈ Z, par définition nZ ⊂ Z. Vérifions les trois propriétés requises pour avoir un idéal :

I i) On a : 0 ∈ nZ puisque 0 = n× 0.

I ii) Soient (x, y) ∈ (nZ)2, il existe (k, k′) ∈ Z2 tels que x = nk et y = nk′. Ainsi x+ y = n(k + k′) ∈ nZ
puisque k + k′ ∈ Z.

I iii) Soient λ ∈ Z et x ∈ nZ, il existe k ∈ Z tel que x = nk. On a : λx = n(λk) ∈ nZ puisque λk ∈ Z.

nZ est un idéal de Z

(b) i. Comme l’idéal I 6= {0}, il existe un entier non nul appartenant à I, notons-le m.

• Si m > 0, il appartient à I ∩ N∗.
• Si m < 0, on a −1×m = −m ∈ I d’après la condition iii) et −m > 0.

Ce raisonnement démontre que I ∩ N∗ est non vide et bien sûr I ∩ N∗ ⊂ N. Or toute partie non vide
de N possède un minimum.

n = min(I ∩ N∗) existe

ii. Soit a ∈ I, effectuons la division euclidienne de a par n qui est bien non nul par définition. Il existe
(q, r) ∈ Z2 tels que :

a = qn+ r avec 0 ≤ r < n

On a n ∈ I donc (−q)× n ∈ I d’après la propriété iii). De plus comme a ∈ I, on a r = a+ (−qn) ∈ I
d’après la propriété ii).

Si r 6= 0, on a r ∈ I ∩ N∗ et r < n, ceci est absurde comme n est le minimum de I ∩ N∗. On a
nécessairement r = 0 et par suite a = qn ∈ nZ. Ce qui démontre que :

I ⊂ nZ

iii. Réciproquement, soit x ∈ nZ, il existe k ∈ N tel que x = nk. Comme n ∈ I, la propriété iii) implique
que x = nk ∈ I. Par double inclusion, on a démontré que :

I = nZ

(c) C’est un bilan des questions 2.(a) et 2.(b), les idéaux de Z sont exactement les parties de Z de la forme
nZ où n ∈ N. La question 2.(a) démontre en effet que nZ est un idéal de Z et la question 2.(b) démontre
la réciproque, à savoir qu’un idéal de Z s’écrit sous la forme nZ où n ∈ N∗. Enfin il faut tenir compte de
l’idéal {0} qui est obtenu pour n = 0.

I idéal de Z⇔ ∃n ∈ N, I = nZ
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3. On procède par double implication.

(⇒) On suppose que I est un idéal de A qui contient un élément inversible que l’on note x. D’après la propriété
iii), on a 1 = x−1x ∈ I puisque x−1 ∈ A. Soit λ ∈ A, on a λ = λ×1 ∈ I toujours d’après la propriété iii) puisque
1 ∈ I. Ce qui démontre que A ⊂ I et par définition I ⊂ A d’où I = A.

(⇐) Réciproquement si I = A (qui est bien un idéal de A), on a 1 ∈ I qui est inversible.

I contient un élément inversible ⇔ I = A

4. (a) On rappelle la caractérisation de l’image réciproque qui va nous servir dans toute cette question, pour tout
x ∈ A :

x ∈ f−1(J)⇔ f(x) ∈ J

On a f−1(J) ⊂ A. Vérifions les trois conditions requises pour que f−1(J) soit un idéal de A :

I i) 0A ∈ f−1(J) car f(0A) = 0
Â
∈ J car f est un morphisme et J est un idéal de Â.

I ii) Soient (x, y) ∈ f−1(J), on a f(x+ y) = f(x) + f(y) ∈ J puisque f(x) et f(y) sont deux éléments de
J qui est un idéal de Â. Ce qui démontre que x+ y ∈ f−1(J).

I iii) Enfin, soit λ ∈ A et x ∈ f−1(J), on a f(λx) = f(λ)f(x). Or f(λ) ∈ Â et f(x) ∈ J , d’après la
propriété iii) cela implique que f(λx) ∈ J et par suite λx ∈ f−1(J).

f−1(J) est un idéal de Â

(b) Considérons le morphisme suivant, avec Z et R munis de l’addition et la multiplication usuelles :

f : Z → R
x 7→ x

Le morphisme f va fournir un contre exemple, prenons I = Z qui est bien un idéal de Z, par contre

f(Z) = Z n’est pas un idéal de R puisque la propriété iii) n’est pas vérifiée. En effet
1

2
∈ R et 1 ∈ Z

pourtant
1

2
× 1 =

1

2
/∈ Z.

L’image directe d’un idéal par un morphisme d’anneaux n’est pas toujours un idéal

5. (a) Soit x ∈ I, on a x = x1 ∈ I ainsi x ∈
√
I avec n = 1.

I ⊂
√
I

(b) Par définition, on a :
√
I ⊂ A. Il reste à vérifier les trois propriétés :

I i) 0 ∈
√
I car 0 = 01 ∈ I.

I ii) Soient (x, y) ∈ (
√
I)2, c’est-à-dire qu’il existe (m,n) ∈ (N∗)2 tels que xm ∈ I et yn ∈ I. Comme

l’anneau A est commutatif, x et y commutent et on peut appliquer la formule du binôme de Newton :

(x+ y)m+n =
m+n∑
k=0

(
m+ n

k

)
xkym+n−k =

m∑
k=0

(
m+ n

k

)
xkym+n−k

︸ ︷︷ ︸
(1)

+
m+n∑
k=m+1

(
m+ n

k

)
xkym+n−k

︸ ︷︷ ︸
(2)
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• Etude de (1). On a 0 ≤ k ≤ m ⇔ n ≤ m + n− k ≤ m + n. Ceci montre que l’on peut mettre yn

en facteur dans la somme (1) :

(1) =

m∑
k=0

(
m+ n

k

)
xkym+n−k = yn

m∑
k=0

(
m+ n

k

)
xkym−k︸ ︷︷ ︸

λ

L’expression (1) appartient à I d’après la propriété iii) puisque c’est le produit d’un élément λ de A par
yn qui appartient à I.

• Etude de (2). Là aussi, on peut réécrire la somme (2) en mettant xm en facteur :

m+n∑
k=m+1

(
m+ n

k

)
xkym+n−k = xm

m+n∑
k=m+1

(
m+ n

k

)
xk−mym+n−k

On conclut que même que précédemment que (2) appartient à I puisque c’est le produit d’un élément de
I par un élément de A.

Ainsi (x+ y)m+n = (1) + (2) est un élément de I comme somme de deux éléments de I d’après la propriété
ii). Ce qui démontre que x+ y ∈

√
I.

I iii) Enfin, soit λ ∈ A et x ∈
√
I, il existe n ∈ N∗ tel que xn ∈ I. En utilisant le fait que A est commutatif,

on a :
(λx)n = λnxn ∈ I d’après la propriété iii) car xn ∈ I

√
I est un idéal de I

(c) D’après la question (a), si I est un idéal de A alors I ⊂
√
I. En appliquant cette propriété à

√
I qui est

bien un idéal d’après la question précédente, on a
√
I ⊂

√√
I. Pour l’autre inclusion, prenons x ∈

√√
I,

cela signifie qu’il existe n ∈ N∗ tel que xn ∈
√
I. Ceci implique l’existence de p ∈ N∗ tel que (xn)p ∈ I,

c’est-à-dire xnp ∈ I. Comme np ∈ N∗, ceci démontre que x ∈
√
I. Par double inclusion, on conclut que :√√

I =
√
I

(d) Si m = 0 ou m = 1, on a bien
√
mZ = mZ. On remarque également que d’après la question (a), on a

toujours mZ ⊂
√
mZ.

I Supposons que m ≥ 2 soit divisible par le carré d’un entier, c’est-à-dire qu’il existe un entier d ≥ 2
tel que m = d2k avec k ∈ N. On a dk ∈

√
mZ puisque (dk)2 = mk ∈ mZ, pourtant dk /∈ mZ puisque

m ne divise pas dk. Ceci montre que si m est divisible par le carré d’un entier alors
√
mZ 6⊂ mZ et par

contraposition si
√
mZ ⊂ mZ alors m n’est pas divisible par le carré d’un entier.

I Réciproquement supposons que m ≥ 2 ne soit pas divisible par le carré d’un entier. Démontrons que√
mZ ⊂ mZ, soit x ∈

√
mZ, il existe n ∈ N∗ tel que xn ∈ mZ. Ceci implique que m divise xn. Soit p un

nombre premier qui divise m alors p|xn donc p|x et par suite m|x puisque p apparâıt à la puissance 1 dans
la décomposition en facteurs premiers de m. Or m|x⇔ x ∈ mZ, ce qui démontre l’inclusion souhaitée.

√
mZ = mZ si et seulement si m n’est pas divisible par le carré d’un entier

6. (a) L’idéal 2Z est un idéal premier de Z. En effet, si x et y sont deux entiers relatifs tels que xy ∈ 2Z, c’est-à-dire
que 2 divise xy, ceci implique que 2 divise x ou 2 divise y. Ce qui démontre que x ∈ 2Z ou y ∈ 2Z.

Plus généralement, si p est un nombre premier alors pZ est un idéal premier de Z
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(b) I = {0} est un idéal de A et par hypothèse, il est premier. Ainsi pour (x, y) ∈ A2, on a :

xy ∈ {0} ⇒ x ∈ {0} ou y ∈ {0}

C’est-à-dire xy = 0 ⇒ x = 0 ou y = 0. Or l’anneau A est supposé commutatif, non nul et le calcul
précédent montre que A est intègre. Soit x ∈ A \ {0}, démontrons que x est inversible ceci impliquera que
A est un corps. On considère l’ensemble x2A = {x2y, y ∈ A}, on montre sans difficulté que x2A est un
idéal de A. Cet idéal est premier d’après l’hypothèse de l’énoncé, on a x2 ∈ x2A donc x ∈ x2A, c’est-à-dire
que x = x2y où y ∈ A. Or l’anneau A est intègre comme nous l’avons démontré ci-dessus donc x = x2y et
x 6= 0 implique que 1 = xy. Ce qui démontre que x est inversible.

A est un corps


