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Probleme 1

A-Préliminaires et premiers exemples

Le but de cette partie est de se familiariser avec les notations introduites en étudiant tout d’abord un exemple de
suite qui n’est pas dense dans [0,1[. Dans la question 3., on met en évidence un critére qui garantit que certaines
suites, dites a croissance lente, sont denses dans [0, 1].

1. Pour tout z € R, on a :

r—1l<|z|<ze o< —|z/]<l-zs0<z—|z|/<1

Vr € R, M(x) € [0,1]

2. (a) Soit x € Z. Pour tout n € N, on a nx € Z, d’ou :

ii.

iil.

ii.

up, = M(nz) =nx — |nx| =nx —nx =0

Sixz € Z, alors (uy) est la suite nulle

i. On a les premiers termes de la suite u,, :

n|0] 1 2 3 4 15| 6 7 8 9 10| 11
un |010,410,8(0,2/0,6/0/0,4]0,8{0,2]0,6

(@)
\.O
e

2
La suite (uy) semble étre périodique, avec une période de longueur 5 : 0, £
Soit n € N, il s’agit de démontrer que up1q = u,. On a :

un+q:(n+q)£— L(n—kq)EJ :n£+p— Ln£+pJ :ng—s—p— LngJ —p:ng— Ln]—jJ = up
q q q q q q q

La suite (u,) étant périodique de période ¢, elle prend au plus ¢ valeurs distinctes (exactement ¢

valeurs si p et ¢ sont premiers entre eux). Il est clair qu’il est possible de trouver, dans l'intervalle
2i 2i+1 ]

2(¢+1)" 2(q+1)

[0,1], ¢+ 1 intervalles non triviaux et disjoints par exemple la famille d’intervalles [

oul0<i<q.
Etant donné que la suite (uy) prend au plus ¢ valeurs, il y aura I'un de ces ¢ + 1 intervalles qui ne
contiendra pas de terme de la suite (u,). Ce qui démontre que (u,) n’est pas dense dans [0, 1].

Si z € Q alors la suite (M (nx)) n’est pas dense dans [0, 1]

La réciproque de cette proposition sera démontrée a la question 2. de la partie B.

i. La suite (n?) est croissante et tend vers +oo mais (n + 1)? — n? = 2n + 1 ne tend pas vers 0.

(n?) n’est pas & croissance lente

La suite (v/n) est croissante et tend vers +oo. Pour tout n € N, en utilisant la quantité conjuguée, il
vient :

— (n+1)—n 1
" v vVn+1l+yn  n+1+4/nnotoeo

(v/n) est & croissance lente
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i. La suite (In(n)),>1 est croissante et tend vers +o0o. Pour tout n € N, on a :

—

i

ln(n+1)—ln(n):ln(n+1> :ln(1+l) 0

n n/ n—+oo

(In(n))n>1 est a croissance lente

(b) i. Clest exactement la définition de liril (an+1 — ap) = 0, étant donné que a < b, on a bien £ > 0.
n—-+0o0

i. La suite (a,) tend vers +o0, d’ou 'existence de N’ > N tel que upr > A+ 1.

iii. L’idée est la suivante : ay < A par définition de A et ayr > A+ 1 avec N’ > N. Or, a partir du rang
N, la différence entre deux termes consécutifs de la suite (a,) est inférieure ou égale a ¢, la suite étant
croissante, il y aura nécessairement un terme de la suite qui va tomber dans l'intervalle [A + a, A + b]
puisque cet intervalle est de longueur 2. Ainsi il existe ng € N tel que ap, € [A+a, A+ b].

—

a
"o
NN ITN S TNITNITNSTNS TN S TN STN S TN TN TN
= Y Y Y Y ) @) ) @) Y Y Y Y 1 8- =

aN A A+a A+b A+1 aN

Vous aurez remarqué que l’hypothese de croissance de la suite (ay,) clarifie la situation mais n’est pas
nécessaire.
iv. Comme A est un entier, que 0 < a < b <1 et que a,, € [A+a,A+b],on a |ay,| = A. Ainsi :

A+a<ap, <A+bs A+a—A<an, — |an) <A+b—A<sa< M(ap,) <b

En résumé, pour tous (a,b) € [0,1[% tels que 0 < a < b < 1, on a trouvé ng € N tel que M(ay,) € [a,b],
ceci est la définition de :

(M (ay)) est dense dans [0, 1]

v. D’apres la question 3.(a), les suites (v/n) et (In(n)),>1 sont a croissance lente, ainsi (M(y/n)) et
(M(In(n))) sont deux suites denses dans [0, 1].

B-Sous-groupes additifs de R

Cette partie est consacrée a la caractérisation des sous-groupes additifs de R, c’est une partie assez technique qui
demande une bonne maitrise de la notion de borne inférieure. Le résultat démoniré sera utilisé pour poursuivre [’étude

de la densité de certaines suites.
1. Vérifions les conditions requises pour avoir un sous-groupe.
» Par définition : oZ C R.
» L’élément neutre de ’addition s’écrit 0 = a x 0 avec 0 € Z, donc 0 € aZ.
» Soient (a,b) € (aZ)?, il existe (p,q) € Z* tels que : a = ap et b = aq. Ainsi :

a—b=alp—q)€aZ, carp—q€EZ

aZ est un sous-groupe additif de RI
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2. C’est du cours, QQ est un sous-groupe additif de R car :

» QCR.

» 0cQ.

» Si (r,7') € Q% alors r — 1’ € Q.

Montrons que Q est dense dans R, pour cela donnons-nous (¢, d) € R? avec ¢ < d. Comme R est archimédien,
il existe N € N* tel que N(d — ¢) > 1. L’intervalle [¢N,dN] est de longueur supérieure a 1 d’ou 'existence de

3.

p € Z tel que ¢N < p < dN. Ainsi le rationnel Laye [c,d], ce qui démontre le résultat.

(a)

N

Q est un sous-groupe additif dense dans ]RI

Le sous-groupe H n’étant pas réduit au singleton {0}, il existe € H tel que x # 0. Si > 0 alors H N R,
est non vide. Si x < 0, on a —x € H puisque H est stable par passage a 'opposé et dans ce cas aussi
H MR’ est non vide. D’apres la propriété de la borne inférieure, étant donné que H NRY est une partie
non vide de R et minorée par 0, elle possede une borne inférieure.

a =inf(H NRY)

Le réel 0 est un minorant de H N R et par définition de la borne inférieure, a est le plus grand des

minorants de H NRY, d’ot :

Comme a > 0, on a 2a > a ainsi 2a, qui est supérieur strictement au plus grand des minorants de H NRY ,
n’est pas un minorant de H NRY. Il existe 21 € H NRY tel que z1 < 2a et comme a est un minorant de

HNRY, il vient :

C’est exactement le méme raisonnement qu’a la question précédente, si x; > a, alors x; n’est pas un
minorant de H NRY , donc il existe xo € H NRY tel que :

a§x2<x1<2aI

D’apres l'inégalité précédente, on a : 0 < 1 — 23 < 2a —a = a. Or 21 — x5 est un élément de H puisque
(r1,22) € H? et H est un sous-groupe de R. Finalement z; —x2 € H N Ri mais r1 — 3 < a, ceci est
absurde puisque a est un minorant de H NRY.

En résumé, on a ;1 > a mais x1 > a est absurde, c’est donc que x; = a et par suite :

Soit k € Z, montrons que ak € H.

» Sik=0,0ona0¢& H car H est un sous-groupe de R.

» Sik>1,onaak=a+a..+ a, donc ak est bien un élément de H puisque a € H et H est stable par
—_——

k fois
somime.

» Si k < —1, on a d’apres le calcul ci-dessus a(—k) € H et comme H est stable par passage a 'opposé cela

implique que ak € H.
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(e) Pour tout x € H, on a :

x x x x
771<L7J§7 < :pfa<aLfJ§x
a a

T
& —x+a>—a{—J > —x
a

= a>x—a{£J20
a

x x
Ce qui démontre que x — CLL*J € [0, a[, d’apres la question précédente : CLL*J € aZ C H. Comme H est
a a

x
un sous-groupe de R, on a = — aL—J € H N Ry et cette expression est inférieure strictement a a, d’ou :
a
x T
T — a{—J = 0 et par suite x = a[—J € aZ.
a a

(f) Les deux questions précédentes démontrent que :

aZ = H

5. (a) Onad—c>0=adonc d— cn’est pas un minorant de H N R’ . Ainsi :

il existe x € H N R, telque0<x<d—cI

(b) L’idée est la suivante : les multiples entiers de = consécutifs sont & une distance inférieure strictement a
d — ¢ les uns des autres. Il y a donc au moins 'un de ces multiples qui tombe dans l'intervalle [c, d]. Pour
donner une rédaction plus précise, on considere les différents cas suivants :

»Sic<0<d,0¢€]c,dNH.

» Si0<c<d, onpose A= {k €N, kx > d}. L’ensemble A est une partie non vide de N car x > 0 et R
est archimédien, donc A posséde un minimum que nous notons kg. On a koz > d et (kg — 1)x < d puisque
ko —1¢ A.

D’autre part :

kox>ds kygxr—xz>d—x>c

Ce qui démontre que (ko — 1)z € [¢,d] N H.
» Sic < d<0,dapres ’étude précédente : [—d, —c] N H # (). Comme H est stable par passage & 'opposé
on a également : [c,d] N H # ().

Dans tous les cas :
[e,d|NH # 1

6. Dans la question précédente, on a démontré que si a = 0 alors H est dense dans R. Dans la question 4., on a
démontré que si a > 0 alors H est monogene. Enfin si H = {0}, alors H = 0Z et c’est également un groupe

monogene.
Tout sous-groupe additif de R est dense dans R ou monogéne.
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C-Application a Uétude de la suite (cos(n))

Dans cette partie, on démontre que la suite (cos(n)) est dense dans [—1,1], ce qui implique que tous les réels de
cet intervalle sont des valeurs d’adhérence de la suite.

1. (a) Pour tout (z,y) € R* on a :

cos(z) + cos(y) = 2 cos (w —2|— y) cos (1’ ; y>

En appliquant cette formule & x =n+ 1 et y =n — 1, il vient :

Vn > 1, tupy1 + tp—1 = 2uy, cos(1)

(b) Puisque I'on a supposé que (uy,) tend vers [, les suites (un+1) et (un—1)n>1 convergent également vers [, en
passant a la limite dans la relation précédente, on a : 2l = 2/ cos(1). Etant donné que cos(1) # 0, on a :

=0

(¢) La relation cos(2z) = 2cos?(z) — 1 est valable pour tout z réel, appliquée & z = n cela donne :

u%ZQUZ_lI

(d) On passe a la limite dans la relation précédente, on obtient : | = 21?2 — 1. Sachant que [ = 0, on a absurdité
recherchée, ce qui démontre que :

(cos(n)) diverge

2. (a) On vérifie les conditions requises :
» Par définition : Z + 27Z C R.
» 0€Z+2nZ.
» Soit (r,7') € (Z + 2nZ)?, il existe (p,q,p’,q') € Z* tels que r = p + 27q et ' = p’ + 27¢’. Ainsi :

r—r'=(p+2mq) = (' +2m¢) = (p—q) +27(p' = ) € Z+ 27Z

Z + 277 est un sous-groupe additif de RI

(b) Supposons que Z + 27Z s’écrive aZ ou o € R. On a :

1€Z+27Z (p=1, ¢=0), donc Ik € Z*, tel que 1 = ak

2n € Z+27Z (p=0, ¢ =1), donc Ik’ € Z*, tel que 2m = ok’

/
Ceci implique, en faisant le quotient, que m = o5k € Q ce qui est absurde.

D’apres le résultat démontré dans la partie B, comme Z + 277 est un sous-groupe additif de R qui n’est

pas monogene, c’est que :
Z + 277 est dense dans R '

(¢) Six € Z+ 277, il existe (p,q) € 72 tel que © = p + 27q, la fonction cosinus étant 27-périodique et paire,
il vient :

cos(z) = cos(p + 2mq) = cos(p) = cos(|p|) € Y car |p| € N

Vo € Z + 277, cos(x) €Y
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(d) Soit (c,d) € [~1,1]? tels que ¢ < d, montrons qu’il existe y € Y tel que ¢ < y < d. La fonction arccosinus
est strictement décroissante, donc arccos(d) < arccos(c). A la question 2.(b), nous avons démontré que
7 + 277 est dense dans R, ainsi il existe z € Z + 27Z tel que arccos(d) < x < arccos(c). Par suite :
c < cos(x) <d, or cos(z) € Y, on a bien démontré que :

(cos(n)) est dense dans [—1,1]

1 1
3. Pour tout n € N* fixé, on a l'intervalle [Z ——, I+ —} qui peut étre partagé en un nombre quelconque d’intervalles
n n

non triviaux disjoints (une description explicite d’un tel partage a été faite a la question 2.(b).iii de la partie
A), comme Y est dense dans [—1, 1], la suite (cos(n)) visite chacun de ces intervalles, ainsi :

Vn € N*, [z . l} NY est infini
n n

On va construire l'extractrice ¢ par récurrence :

» On choisit pour ¢(0) un entier quelconque.

1 1

» Supposons avoir donné ¢(0), ..., o(n) pour un entier naturel n. L’ensemble [l o 1,[ + | NY est
n

1 1
— 1,l + oy 1] On pose ¢(n + 1) = k. Par construction,

infini, il existe ainsi k£ > ¢(n) tel que cos(k) € [l -

1 1
Papplication ¢ est strictement croissante et pour tout n > 1 : cos(p(n)) € {l - =0+ f] ce qui démontre que :
n n

lim cos(p(n)) =1

n—-+00

D-FEtude de la suite (M (nx))

Dans cette partie, on démontre que (M (nx)) est dense dans [0, 1] si et seulement si x est irrationnel.

1.

2.

3.

C’est exactement la méme démarche qu’aux questions 2.(a) et 2.(b) de la partie C' en remplagant 27 par = qui

est également irrationnel.
Z. + xZ est dense dans R I

Donnons-nous 0 < a < b < 1 et tentons de trouver ny € N tel que M(ngx) € [a,b]. D’apres la question
précédente, il existe p + xq € [a,b] avec (p, q) € Z?. C’est-a-dire que zq € [a — p, b — p], donc que M (zq) € [a, b].
On peut toujours se ramener a prendre g > 0, puisque Z + zN est également dense dans R, en adaptant la
démonstration proposée a la question 5. de la partie B.

Ainsi en prenant ¢ = ng, on a bien M (ngx) € [a,b]. Ce qui démontre en recoupant le résultat obtenu avec celui
de la question 2. de la partie A, que :

r € R\ Q& (M(nx)) dense dans R

(a) Raisonnons par 1’absurde en supposant que log(2) = P avec (p,q) € (N*)2. On applique & cette relation
q

y
la fonction réciproque de log : x +— 10% cela donne : 2 = 109¢. Ceci implique que 27 = 107 = 2P x 5P, par
unicité de la décomposition en facteurs premiers, il est nécessaire que p = 0, ce qui est absurde.

log(2) est irrationnel
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(b) Soit a un entier naturel non nul d’écriture en base 10 : a = [apap—1...a1a0] ot p € N et ou les (a;)o<i<p
sont des chiffres. L’écriture en base 10 du nombre 2" commence par a si et seulement s’il existe un entier
naturel k tel que :

ax10F <2" < (a+1) x 10* = k +log(a) < nlog(2) < k + log(a + 1)
C’est-a-dire que :
log(a) — [log(a)] < nlog(2) — [nlog(2)] < log(a+1) — [logla+1)] ()

sauf dans le cas ot a + 1 est une puissance de 10 le membre de droite devant étre alors remplacé par 1.

Comme log(2) est irrationnel, la suite M (nlog(2)) est dense dans [0, 1], il est ainsi possible de trouver un
entier n vérifiant la condition (x) et par suite 2" commence par la séquence a.

Pour toute séquence de chiffres, il existe une puissance de 2 commencant par cette séquence.

E-Nombre d’or et nombres de Pisot

On démontre notamment dans cette partie que les puissances du nombre d’or sont de plus en plus proches des
entiers.

1. On suit ’énoncé en utilisant une récurrence double. On considere '’hypothese de récurrence valable pour n € N :

1
Hn @ @™+ eN
" (—)m
0 1 )
» On a ¢ + 5 = 2 € N. D’autre part :
(—¢)
L1 Vs 2 14VE L 21-Vh) 1 4VE Vel
T T T2 TievB 2 +vB-vE) | 2 2
Ainsi Hg et H1 sont vérifiées.
» Soit n € N, on suppose que H,, et Hy1 sont vraies, on a :
1 1 1 1
+1 _ nt+2 n
©" +7)<90+7>—80 t e Y T
( (_()O)n-i-l —p (—90)”—"_2 "
C’est-a-dire que :
1 1 1 1 1
(pn+2+ :<90n+_|_ >(¢+7>+¢n+7
(=) t? (=)t —¢ ©"
—
€N avec Hn+1 =1 €N avec Hn
Ce qui démontre I’hypothese au rang n + 2 et acheve la récurrence.
VneN, " + ! eN
’ (—¢)"
: L 1 1-+5 ,
2. Au cours de la question précédente, nous avons vu que : —— = 5 Etant donné que 2 < V5 < 3, on a
¥
1 . i 1\n
‘——’<1etparsu1te li (——) =0.
) n—-+00 ©




MPSI2 DS4 Mathématiques corrigé 2025-2026

1
3. Pour tout n € N, notons b, = ¢" + ——— qui est un entier d’apres la question 1.(a). On a, pour n € N :

(=)™

En passant a la limite quand n tend vers +oo il vient : lim w9, =1 et lim wg,y1 = 0. Ainsi, par définition
n——+o0o n——+o0o

de la limite :

ANEN, Vn > N, v, € [o,ﬂug,l[

[ en N +1 intervalles

= w

)

> =

On utilise le principe vu a la question 2.(b)iii. de la partie A, en partageant 'intervalle }
disjoints.
Les N premiers termes de la suite ne peuvent visiter chacun des N +1 intervalles disjoints et les termes d’indices

1
supérieurs & N n’appartiennent pas a } T [ Ce qui montre que (v,) n’est pas dense dans [0, 1].

(vn) n’est pas dense dans [0, 1]
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Probléeme 2

1. Soit a € R, I, est inclus dans F(R,R) par définition. Il reste a vérifier les trois conditions requises pour que I,
soit un idéal :

» i) Notons 6 la fonction nulle de R dans R, on a #(a) = 0 ainsi 6 € I,.

» ii) Soient (f,g) € I2, c’est-a-dire que f(a) = g(a) =0. On a (f +g)(a) = 0 ainsi f + g € I,.

» iii) Soit A € F(R,R) et f € I,, c’est-a-dire que f(a) =0. On a (Af)(a) = A(a)f(a) =0 ainsi A\f € I,.

2.

I, est un idéal de F(R,R)

(a) Soit n € Z, par définition nZ C Z. Vérifions les trois propriétés requises pour avoir un idéal :

(b)

» i) On a : 0 € nZ puisque 0 = n x 0.

» ii) Soient (z,y) € (nZ)?, il existe (k, k') € Z? tels que = nk et y = nk’. Ainsi z +y = n(k + k') € nZ
puisque k + k' € Z.

» iii) Soient A € Z et x € nZ, il existe k € Z tel que x = nk. On a : Az = n(A\k) € nZ puisque \k € Z.

i.

ii.

iii.

nZ est un idéal de Z'

Comme 'idéal I # {0}, il existe un entier non nul appartenant a I, notons-le m.

e Sim > 0, il appartient & I N N*.

e Sim <0,ona—1xm=—m e I dapres la condition iii) et —m > 0.

Ce raisonnement démontre que I N N* est non vide et bien sir I N N* C N. Or toute partie non vide
de N possede un minimum.

n = min(/ N N*) existe

Soit a € I, effectuons la division euclidienne de a par n qui est bien non nul par définition. Il existe
(q,7) € Z? tels que :
a=qn+ravec 0<r <n

On an € I donc (—q) x n € I d’apres la propriété iii). De plus comme a € I, onar =a+ (—gn) € I
d’apres la propriété ii).

Sir#0,onar € INN"etr < n, ceci est absurde comme n est le minimum de I N N*. On a
nécessairement r = 0 et par suite a = gn € nZ. Ce qui démontre que :

Réciproquement, soit x € nZ, il existe k € N tel que x = nk. Comme n € I, la propriété iii) implique
que x = nk € I. Par double inclusion, on a démontré que :

I =nZ

(c) Cest un bilan des questions 2.(a) et 2.(b), les idéaux de Z sont exactement les parties de Z de la forme
nZ ou n € N. La question 2.(a) démontre en effet que nZ est un idéal de Z et la question 2.(b) démontre
la réciproque, a savoir qu’un idéal de Z s’écrit sous la forme nZ ou n € N*. Enfin il faut tenir compte de
I'idéal {0} qui est obtenu pour n = 0.

Iidéal de Z < dn € N, I:nZI
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3. On procede par double implication.

4.

=) On suppose que I est un idéal de A qui contient un élément inversible que ’on note z. D’apres la propriété
pPp q q q p prop

iii),onal==x

1y e I puisque 27! € A. Soit A € A, ona A = Ax 1 € I toujours d’apres la propriété iii) puisque

1 € I. Ce qui démontre que A C I et par définition I C A d’ou I = A.
(<) Réciproquement si I = A (qui est bien un idéal de A), on a 1 € I qui est inversible.

(a)

I contient un élément inversible < I = A'

On rappelle la caractérisation de I'image réciproque qui va nous servir dans toute cette question, pour tout
r€A:

zefY))e flz)ed

On a f~1(J) C A. Vérifions les trois conditions requises pour que f~'(J) soit un idéal de A :

i) 04 € fH(J) car f(04) = 03 € J car f est un morphisme et J est un idéal de A.

» ii) Soient (z,y) € f~ W), ona fz+y) = flz)+ fly ) € J puisque f(z) et f(y) sont deux éléments de
J qui est un idéal de A. Ce qui démontre que z + y € f~(J).

> iii) Enfin, soit A € A et z € f1(J), on a f(Az) = fA)f(z). Or f(A) € A et f(z) € J, dapres la
propriété iii) cela implique que f(Az) € J et par suite Az € f~1(J).

f71(J) est un idéal de A

Considérons le morphisme suivant, avec Z et R munis de ’addition et la multiplication usuelles :

f+zZ — R
A

Le morphisme f va fournir un contre exemple, prenons I = 7Z qui est bien un idéal de Z, par contre

1
f(Z) = Z n’est pas un idéal de R puisque la propriété iii) n’est pas vérifiée. En effet 5 cRetleZ

1 1
tant — x 1= - ¢ Z.
pourtant - 2§é

L’image directe d’un idéal par un morphisme d’anneaux n’est pas toujours un idéal

Soit z € I,onax=ax" €I ainsi z € VI avec n = 1.

IcVI

Par définition, on a : VI C A. 1l reste A vérifier les trois propriétés :

»i)0ecVIicar0=0"€eI.

» ii) Soient (z,y) € (VI)2, cest-d-dire qu’il existe (m,n) € (N*)? tels que 2™ € I et y" € I. Comme
I’anneau A est commutatif, x et y commutent et on peut appliquer la formule du binéme de Newton :

m-+n sy m+n km+n k S m+n km+n k fazy m—+n km+n k
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e Etude de (1). Ona 0 <k <m<n<m+n—k<m+n. Ceci montre que 'on peut mettre y"
en facteur dans la somme (1) :

L’expression (1) appartient & I d’apreés la propriété iii) puisque c’est le produit d’un élément \ de A par
y" qui appartient & I.
e Etude de (2). La aussi, on peut réécrire la somme (2) en mettant " en facteur :

m-+n m4+mn m-+n m4+mn
k m+n—k _ _.m k—m_, m+n—k
> (M )atumen e 3 (M )y

On conclut que méme que précédemment que (2) appartient a I puisque c’est le produit d’un élément de
I par un élément de A.
Ainsi (2 +y)™ ™™ = (1) + (2) est un élément de I comme somme de deux éléments de I d’apres la propriété
ii). Ce qui démontre que = +y € V.
» iii) Enfin, soit A\ € Aet z € VT, il existe n € N* tel que 2™ € I. En utilisant le fait que A est commutatif,
on a :

(Ax)" = A"z € I d’apres la propriété iii) car z" € I

VT est un idéal de T

D’apres la question (a), si I est un idéal de A alors I C VI. En appliquant cette propriété a VI qui est

bien un idéal d’apres la question précédente, on a VI c \/ V1. Pour I'autre inclusion, prenons x € 1/ VI ,
cela signifie qu’il existe n € N* tel que 2™ € VI. Ceci implique 'existence de p € N* tel que ()P € I,
c’est-a-dire 2™ € I. Comme np € N*, ceci démontre que z € V1. Par double inclusion, on conclut que :

WI=vi

Sim =0oum =1, on abien VimZ = mZ. On remarque également que d’apres la question (a), on a
toujours mZ C VmZ.

» Supposons que m > 2 soit divisible par le carré d’un entier, c’est-a-dire qu’il existe un entier d > 2
tel que m = d’k avec k € N. On a dk € v'mZ puisque (dk)? = mk € mZ, pourtant dk ¢ mZ puisque
m ne divise pas dk. Ceci montre que si m est divisible par le carré d’un entier alors VmZ ¢ mZ et par
contraposition si VmZ C mZ alors m n’est pas divisible par le carré d’un entier.

» Réciproquement supposons que m > 2 ne soit pas divisible par le carré d’un entier. Démontrons que
VmZ C mZ, soit x € VmZ, il existe n € N* tel que 2™ € mZ. Ceci implique que m divise z™. Soit p un
nombre premier qui divise m alors p|z" donc p|x et par suite m|x puisque p apparait a la puissance 1 dans
la décomposition en facteurs premiers de m. Or m|x < x € mZ, ce qui démontre 'inclusion souhaitée.

VmZ = mZ si et seulement si m n’est pas divisible par le carré d’un entier

L’idéal 27Z est un idéal premier de Z. En effet, si x et y sont deux entiers relatifs tels que xy € 2Z, c’est-a-dire
que 2 divise zy, ceci implique que 2 divise  ou 2 divise y. Ce qui démontre que = € 2Z ou y € 27Z.

Plus généralement, si p est un nombre premier alors pZ est un idéal premier de ZI
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(b) I = {0} est un idéal de A et par hypothese, il est premier. Ainsi pour (z,y) € A%, on a :
xy € {0} = x € {0} ouy € {0}

C’est-a-dire xy = 0 = = Oouy = 0. Or anneau A est supposé commutatif, non nul et le calcul
précédent montre que A est integre. Soit x € A\ {0}, démontrons que x est inversible ceci impliquera que
A est un corps. On considére 'ensemble z2A = {x2y, y € A}, on montre sans difficulté que z?A est un
idéal de A. Cet idéal est premier d’aprés 'hypothése de Iénoncé, on a z? € z2A donc z € 224, c’est-a-dire
que z = 2%y ot y € A. Or Panneau A est intégre comme nous l’avons démontré ci-dessus donc z = z2y et
x # 0 implique que 1 = zy. Ce qui démontre que z est inversible.

A est un corps I




