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1 FFF Soit (un) une suite réelle bornée telle que (vn) =
(
un +

1

2
u2n

)
converge vers l ∈ R.

1. Justifier que (un) admet une valeur d’adhérence.

2. Soit a une valeur d’adhérence de (un), démontrer que 2(l − a) est une valeur d’adhérence de (un).

3. Expliciter la suite définie par a0 = a et pour tout n ∈ N, an+1 = 2(l − an).

4. En déduire que (un) tend vers
2

3
l.

(X-ENS)

Corrigé :
1. La suite (un) est bornée, d’après le théorème de Bolzano-Weierstrass, il existe une extractrice ϕ telle que (uϕ(n))

converge.

2. Soit a une valeur d’adhérence de (un), qui existe d’après la question précédente, notons ϕ l’extractrice associée. On a :

1

2
u2ϕ(n) = vϕ(n) − uϕ(n) −→

n→+∞
l − a

Ainsi lim
n→+∞

u2ϕ(n) = 2(l − a). Ce qui démontre que 2(l − a) est une valeur d’adhérence de (un).

3. La suite (an) ainsi définie est arithmético-géométrique. D’après la méthode vue en cours, on trouve immédiatement :

∀n ∈ N, an =
2

3
l +
(
a− 2

3
l
)

(−2)n

4. D’après la question 2., tous les éléments de la suite définie dans la question 3. sont des valeurs d’adhérence de (un). La
suite (un) étant bornée, l’ensemble de toutes ces valeurs d’adhérence est borné, or la suite (an) n’est pas bornée sauf

dans le cas particulier où a =
2

3
l. Ceci démontre que la seule valeur d’adhérence possible pour (un) est a =

2

3
l. Or une

suite bornée qui possède une unique valeur d’adhérence est convergente, vous pouvez consulter la démonstration de ce
résultat dans l’AR11-6 question 6.

La suite (un) converge vers
2

3
l

2 FFF Soient (an) et (bn) deux suites réelles telles que lim
n→+∞

an + bn = 0 et lim
n→+∞

ean + ebn = 2.

(a) Démontrer que les suites (an) et (bn) sont bornées.

(b) Démontrer que la seule valeur d’adhérence de (an) est 0.

(c) Conclure.

(ENS)

Corrigé :
(a) Pour tout n ∈ N, on a :

ean ≤ ean + ebn et ebn ≤ ean + ebn

Or la suite (ean + ebn) est convergente donc majorée, ainsi les suites (ean) et (ebn) sont majorées. On en déduit
que les suites (an) et (bn) sont majorées.

D’autre part, pour tout n ∈ N, on a : an = (an + bn) − bn. La suite (an + bn) est minorée car convergente et la
suite (−bn) est minorée car (bn) est majorée, ainsi (an) est minorée comme somme de deux suites minorées. De
même, on démontre que (bn) est minorée.

(an) et (bn) sont bornées

(b) La suite (an) étant bornée, d’après le théorème de Bolzano-Weierstrass, elle admet une valeur d’adhérence a ∈ R.
On note ϕ l’extractrice associée, c’est-à-dire que lim

n→+∞
aϕ(n) = a. Pour n ∈ N, on a :

bϕ(n) = (aϕ(n) + bϕ(n))− aϕ(n) −→
n→+∞

0− a = −a

1
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On obtient donc lim
n→+∞

eaϕ(n) + ebϕ(n) = ea + e−a par continuité de la fonction exponentielle. D’autre part,

(eaϕ(n) + ebϕ(n)) tend vers 2 car elle est extraite de (ean + ebn) qui tend vers 2. On en déduit que ea + e−a = 2,
c’est-à-dire ch(a) = 1, on sait que c’est équivalent à a = 0. On vient de démontrer que la seule valeur d’adhérence
de (an) est 0.

(c) Pour conclure, on utilise le fait qu’une suite bornée qui possède une unique valeur d’adhérence est convergente,
vous pouvez consulter la démonstration de ce résultat dans l’AR10-7 question 6.

La suite (an) tend vers 0

3 F Étudier la convergence de la suite un =
(

5 sin
( 1

n2

)
+

1

5
cos(n)

)n
définie pour n ≥ 1.

Corrigé : La suite
(1

5
sin
( 1

n2

))
tend vers 0, ainsi il existe n0 ∈ N tel que :

∀n ≥ n0,
∣∣∣1
5

sin
( 1

n2

)∣∣∣ ≤ 1

5

Ainsi pour n ≥ n0, on a : ∣∣∣1
5

sin
( 1

n2

)
+

1

5
cos(n)

∣∣∣ ≤ ∣∣∣1
5

sin
( 1

n2

)∣∣∣+
∣∣∣1
5

cos
( 1

n

)∣∣∣ ≤ 1

5
+

1

5
=

2

5

On en déduit que pour n ≥ n0, |un| ≤
(2

5

)n
.

La suite (un) tend vers 0

4 FF Soit (un) une suite réelle telle qu’il existe une suite réelle (αp) qui tend vers 0 et vérifiant :

∀(n, p) ∈ N2, |un| ≤ αp +
p

n+ 1

Démontrer que (un) tend vers 0.

Corrigé : On va revenir à la définition, soit ε > 0, il existe p0 ∈ N tel que |αp0 | ≤
ε

2
. La suite de terme général

p0
n+ 1

tend vers 0 ainsi on peut fixer un entier n0 ∈ N tel que :

∀n ≥ n0,
∣∣∣ p0
n+ 1

∣∣∣ ≤ ε

2

Pour n ≥ n0, nous avons donc :

|un| ≤|αp0 |+
∣∣∣ p0
n+ 1

∣∣∣ ≤ ε

2
+
ε

2
= ε

Les termes soulignés constitue la définition de lim
n→+∞

un = 0.

La suite (un) tend vers 0

5 F La suite (an) est définie par an+1 =
√

4 + 3an pour n ≥ 0 et a0 = 0. Démontrer que (an) converge et calculer sa
limite.

Corrigé : • Par une récurrence immédiate, on vérifie que pour tout n ∈ N, an ≥ 0. Ce qui permet de justifier que
(an) est bien définie.

2
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• Pour commencer, on peut démontrer par récurrence que la suite (an) est majorée par 4.

Hn : an ≤ 4

Initialisation. On a : a0 = 0 ≤ 4.

Hérédité. On suppose que an ≤ 4 pour n ∈ N fixé. On a :

an+1 =
√

4 + 3an ≤
√

4 + 3× 4 ≤
√

16 = 4

Ce qui démontre que pour tout n ∈ N, an ≤ 4.

• On peut ensuite étudier la monotonie de (an). On a :

an+1 − an =
√

4 + 3an − an =
(
√

4 + 3an − an)(
√

4 + 3an + an)√
4 + 3an + an

=
−a2n + 3an + 4√

4 + 3an + an
=

(4− an)(an + 1)√
4 + 3an + an

≥ 0

car nous savons que pour tout n ∈ N, an ∈ [0, 4]. La suite (an) est croissante.

• La suite (an) est croissante et majorée, elle converge vers l ∈ [0, 4]. On passe à la limite dans la relation an+1 =
√

4 + 3an,
pour obtenir l =

√
4 + 3l, ce qui donne l2 = 4 + 3l. On résout cette équation pour en déduire que l = 4 ou l = −1.

(an) converge vers 4

6 FFF Soit (zn) une suite à valeurs complexes. On suppose que :

∀(p, q) ∈ N2, p 6= q ⇒ |zp − zq| ≥ 1

Démontrer que lim
n→+∞

|zn| = +∞.

Corrigé : On raisonne par l’absurde en supposant que (|zn|) ne tend pas vers +∞. Ce signifie que :

∃A ∈ R, ∀N ∈ N, ∃n ≥ N, |zn| ≤ A

Cela signifie qu’il existe une infinité de termes de la suite qui sont bornés en module par A, on peut les placer dans une suite
extraite. C’est-à-dire qu’il existe une extractrice ϕ telle que :

∀n ∈ N, |zϕ(n)| ≤ A

La suite (zϕ(n)) est bornée donc elle admet une suite extraite convergente, il existe une extractrice ψ telle que (zϕ(ψ(n)))
converge vers l. Il reste à appliquer l’hypothèse pour obtenir une contradiction. Pour tout n ∈ N, on a ϕ(ψ(n)) 6= ϕ(ψ(n+1))
par stricte croissance des extractrices, ainsi :

|zϕ(ψ(n)) − zϕ(ψ(n+1))| ≥ 1

En passant à la limite, on obtient |l − l| ≥ 1 ce qui est absurde.

lim
n→+∞

|zn| = +∞

7 F Soient (un) et (vn) deux suites réelles telles que :
∀n ∈ N, 0 ≤ un ≤ 2

∀n ∈ N, 0 ≤ vn ≤ 3

lim
n→+∞

unvn = 6

Que peut-on dire des suites (un) et (vn) ?

3
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Corrigé : Soit n ∈ N, on a :

un
vn
3
≤ un ≤ 2 et

un
2
vn ≤ vn ≤ 3

On utilise le théorème d’encadrement pour obtenir :

lim
n→+∞

un = 2 et lim
n→+∞

vn = 3

8 F Soit a ∈]0, 1[. On définit la suite (un) par :

∀n ∈ N∗, un =

n∏
k=1

(1 + ak)

1. Étudier le sens de variation de la suite (un).

2. Démontrer que : ∀x ∈ R, 1 + x ≤ ex.

3. En déduire que la suite (un) converge.

Corrigé :

1. La suite (un) est à termes strictement positifs, pour n ∈ N∗, on a :

un+1

un
=

n+1∏
k=1

(1 + ak)

n∏
k=1

(1 + ak)

= (1 + an+1) > 0

La suite (un) est strictement croissante.

2. Cette inégalité se démontre sans problème avec une étude de fonction.

3. Pour démontrer que cette suite croissante converge, il reste à démontrer qu’elle est majorée. Pour cela, on utilise
l’inégalité de la question précédente, pour n ∈ N∗, on a :

un =

n∏
k=1

(1 + ak) ≤
n∏
k=1

ea
k

= e

n∑
k=1

ak

= ea
1−an
1−a ≤ e

a
1−a

car an ∈]0, 1[ donc 1− an ∈]0, 1[. La suite (un) est croissante et majorée donc elle converge.

La suite (un) converge

9 Expliciter le terme général de la suite définie par :{
u0 = 3
∀n ∈ N, un+1 = 2un + 7

Corrigé : On reconnait une suite arithmético-géométrique. On a :

l = 2l + 7⇔ l = −7

On en déduit qu’il existe λ ∈ R tel que pour tout n ∈ N, un = −7 + λ2n. On a u0 = 3 qui équivaut à −7 + λ = 3 donc
λ = 10.

∀n ∈ N, un = −7 + 10× 2n

4
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10 Expliciter le terme général de la suite définie par :{
u0 = 0 et u1 = 5
∀n ∈ N, un+2 = un+1 + 6

Corrigé : L’équation caractéristique est X2 −X − 6 = 0 qui a pour solutions −2 et 3. D’après le cours, on sait que :

∃(A,B) ∈ R2,∀n ∈ N, un = A× (−2)n +B × 3n

On trouve A et B avec les conditions initiales :{
u0 = 0
u1 = 5

⇔
{
A+B = 0
−2A+ 3B = 5

⇔
{
B = −A
2B + 3B = 5

⇔
{
A = −1
B = 1

Finalement :
∀n ∈ N, un = 3n − (−2)n

11 Expliciter le terme général de la suite définie par :{
u0 = 1 et u1 = 1

∀n ∈ N, un+2 = 3un+1 −
9

4
un

Corrigé : L’équation caractéristique est X2− 3X +
9

4
= 0 qui a une solution double

3

2
. D’après le cours, on sait que :

∃(A,B) ∈ R2,∀n ∈ N, un = (A+Bn)
(3

2

)n
On trouve A et B avec les conditions initiales :{

u0 = 1
u1 = 1

⇔

{
A = 1

(A+B)× 3

2
= 1

⇔

{
A = 1

B = −1

3

Finalement :

∀n ∈ N, un =
(
− 1

3
n+ 1

)(3

2

)n

12 Expliciter le terme général de la suite définie par :{
u0 = 2 et u1 = 5
∀n ∈ N, un+2 = 2un+1 − 2un

Corrigé : L’équation caractéristique est X2 − 2X + 2 = 0 qui a deux solutions complexes conjuguées 1 + i =
√

2ei
π
4

et 1− i =
√

2e−i
π
4 . D’après le cours, on sait que :

∃(A,B) ∈ R2,∀n ∈ N, un = 2
n
2

(
A cos

(nπ
4

)
+B sin

(nπ
4

))
On trouve A et B avec les conditions initiales :{

u0 = 2
u1 = 5

⇔

 A = 2
√

2
(
A

1√
2

+B
1√
2

)
= 5

⇔
{
A = 2
B = 3

5
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Finalement :

∀n ∈ N, un = 2
n
2

(
2 cos

(nπ
4

)
+ 3 sin

(nπ
4

))

13 Soit (un) la suite définie par :

∀n ∈ N∗, un =

n∑
k=1

1

n2 + k3

Étudier la convergence de (un).

Corrigé : On procède par encadrement :

∀k ∈ J1, nK,
1

n2 + n3
≤ 1

n2 + k3
≤ 1

n2 + 13

On somme :

∀n ∈ N∗,
n∑
k=1

1

n2 + n3
≤

n∑
k=1

1

n2 + k3
≤

n∑
k=1

1

n2 + 1

Les sommes qui encadrent (un) se calculent :

∀n ∈ N∗,
n

n2 + n3
≤ un ≤

n

n2 + 1

D’après le théorème d’encadrement, on en déduit que :

lim
n→+∞

un = 0

14 F Soit (un) une suite réelle telle que : ∀(n,m) ∈ (N∗)2, 0 ≤ um+n ≤
m+ n

mn
. Démontrer que (un) converge.

Corrigé : Prenons n = m, on obtient :

∀n ∈ N∗, 0 ≤ u2n ≤
2n

n2
=

2

n

D’après le théorème d’encadrement (u2n) tend vers 0.

De même, en prenant m = n+ 1, on obtient :

∀n ∈ N∗, 0 ≤ u2n+1 ≤
2n+ 1

(n+ 1)n

D’après le théorème d’encadrement (u2n+1) tend vers 0.

D’après le théorème de recollement, on en déduit que :

(un) tend vers 0

15 FF Soit θ ∈]0, π[, étudier la limite de la suite :

an =
(
n!

n∏
k=1

sin
( θ
k

)) 1
n

6
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Corrigé : Soit θ ∈]0, π[, pour k ∈ J1, nK, on a
θ

k
∈]0, π[ ainsi sin

( θ
k

)
> 0 et la suite (an) est strictement positive Pour

n ∈ N∗, on a :

ln(an) = ln
( n∏
k=1

k sin
( θ
k

)) 1
n
)

=
1

n

n∑
k=1

ln
(
k sin

( θ
k

))
Cela fait penser au théorème de Cesàro, on pose donc un = ln

(
n sin

( θ
n

))
pour n ≥ 1. On a :

n sin
( θ
n

)
= θ

sin
(
θ
n

)
θ
n

−→
n→+∞

θ

La suite (un) tend vers ln(θ) par continuité de la fonction ln. D’après le théorème de Cesàro, la suite (ln(an)) tend vers ln(θ).

(an) tend vers θ

16 F Soit (an) une suite décroissante qui tend vers 0. Pour n ∈ N, on pose un =

n∑
k=0

(−1)kak. Démontrer que (un)

converge.

Corrigé : La stratégie va être de démontrer que (u2n) et (u2n+1) sont adjacentes.

• La suite (u2n) est décroissante car :

∀n ∈ N, u2n+2 − u2n =

2n+2∑
k=0

(−1)kak −
2n∑
k=0

(−1)kak = a2n+2 − a2n+1 ≤ 0

• La suite (u2n+1) est croissante car :

∀n ∈ N, u2n+3 − u2n+1 =

2n+3∑
k=0

(−1)kak −
2n+1∑
k=0

(−1)kak = −a2n+3 + a2n+2 ≥ 0

• Enfin :

∀n ∈ N, u2n+1 − u2n =

2n+1∑
k=0

(−1)kak −
2n∑
k=0

(−1)kak = −a2n+1 −→
n→+∞

0

D’après le théorème des suites adjacentes, les suites (u2n) et (u2n+1) convergent vers la même limite. D’après le théorème
de recollement (un) converge.

(un) converge

17 FF Pour n ≥ 2, on pose :

un =

(
n
2

)n
2

⌊
n
2

⌋⌊n
2

⌋

Corrigé : On constate que pour n ≥ 1 :
u2n = 1

Ainsi la suite extraite (u2n) converge vers 1. Par contre :

u2n+1 =

(
n+ 1

2

)n+ 1
2

nn
=

√
n+

1

2

(
1 +

1

2n

)n
≥
√
n+

1

2

7
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Nous voyons ainsi que (u2n+1) tend vers +∞ et la suite initiale ne converge pas.

18 F Donner un exemple de suite (un) divergente telle que pour tout entier k ≥ 2, (ukn) converge.

Corrigé : On prend la suite (un) définie par :

un =

{
0 si n n’est pas premier
1 sinon

Si l’on note ϕ l’extractrice composée de tous les nombres premiers pris dans l’ordre, on a (uϕ(n)) constante égale à 1 donc
converge. Cependant si l’on fixe un entier k ≥ 2, on a kn qui est un nombre non premier dès que n ≥ 2 ainsi (ukn) converge
vers 0. La suite (un) convient.

19 F Soit (un) une suite d’éléments de ]0, 1[ telle que :

∀n ∈ N, (1− un)un+1 >
1

4

Montrer que (un) tend vers
1

2
.

Corrigé : • Déjà, la suite (un) est majorée par 1.

• Nous pouvons démontrer ensuite qu’elle est croissante car pour n ∈ N :

un(1− un) =
1

4
−
(1

2
− un

)2
≤ 1

4
< un+1(1− un)

En simplifiant par 1− un qui est non nul, il vient : un < un+1.

• La suite (un) est croissante et majorée, elle converge vers l ∈ R. En passant à la limite dans l’inégalité de départ, il
vient :

(1− l)l ≥ 1

4
⇔ 0 ≥

(
l − 1

2

)2
On en déduit que l =

1

2
.

20 F Pour n ∈ N, on pose In =

∫ 1

0

xn
√

1− xdx. Montrer que (In) converge et calculer sa limite.

Corrigé : On peut procéder directement par encadrement :

∀n ∈ N, ∀x ∈ [0, 1], 0 ≤ xn
√

1− x ≤ xn

Puis on intègre les encadrements :

∀n ∈ N, 0 ≤ In ≤
∫ 1

0

xndx =
1

n+ 1

D’après le théorème d’encadrement (In) tend vers 0.

21 F Soient (un) et (vn) deux suites de réels strictement positives. On suppose que :

∀n ∈ N,
un+1

un
≤ vn+1

vn

Montrer que si (vn) tend vers 0 alors (un) tend vers 0.

8
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Corrigé : On effectue le produit de ces inégalités car les réels mis en jeu sont bien positifs :

n−1∏
k=0

uk+1

uk
≤
n−1∏
k=0

vk+1

vk

Ce qui donne en reconnaissant des produits télescopiques :

∀n ∈ N,
un
u0
≤ vn
v0

Ainsi pour tout n ∈ N :

0 ≤ un ≤
vn
v0
u0

D’après le théorème d’encadrement, on en déduit que (un) tend vers 0.

22 F Soient (un) et (vn) deux suites d’éléments de [0, 1] telles que lim
n→+∞

unvn = 1. Montrer que (un) et (vn) tendent

vers 1.

Corrigé : On utilise simplement le théorème d’encadrement en remarquant que :

∀n ∈ N, 0 ≤ unvn ≤ un ≤ 1

On en déduit que (un) tend vers 1 et de même (vn) tend vers 1.

23 FF Étudier la limite de la suite définie par u0 ∈ C et pour tout n ∈ N, un+1 =
1

5

(
3un − 2un

)
.

Corrigé : On considère les parties réelles et imaginaires en écrivant pour tout n ∈ N, un = xn + iyn où xn ∈ R et
yn ∈ R.

En utilisant la relation de l’énoncé, on a immédiatement pour tout n ∈ N, xn+1 −
xn
5

et yn+1 = yn. On en déduit que la

suite (xn) tend vers 0 tandis que la suite (yn) est constante égale à y0.
Finalement, la suite (un) converge vers iy0.

24 FFF Soient a et b deux réels tels que 0 < a < b. On pose u0 = a, v0 = b et pour tout entier naturel n :

un+1 =
un + vn

2
et vn+1 =

√
un+1vn

1. (a) Démontrer que :

∀(x, y) ∈ (R∗+)2, x < y ⇒ x <
x+ y

2
< y

(b) Démontrer que :
∀(x, y) ∈ (R∗+)2, x < y ⇒ x <

√
xy < y

2. Démontrer que (un) et (vn) sont adjacentes.

3. Démontrer que la limite commune de (un) et (vn) est
b sin(α)

α
où α = Arccos

(a
b

)
.

Corrigé :

1. (a) Soient(x, y) ∈ (R∗+)2 tels que x < y, on a :

x =
x

2
+
x

2
<
x

2
+
y

2
<
y

2
+
y

2
= y

Ce qui est bien l’inégalité souhaitée.

9
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(b) Soient(x, y) ∈ (R∗+)2 tels que x < y, on a :

x =
√
x× x < √xy <

√
y × y = y

Ce qui est bien l’inégalité souhaitée.

2. Tout d’abord, on peut démontrer par une récurrence immédiate que tous les termes des suites (un) et (vn) sont
strictement positifs. Ce qui permet d’affirmer que (un) et surtout (vn) sont bien définies.

D’après la question 1.(a), on a :

u0 <
u0 + v0

2
< v0

c’est-à-dire : u0 < u1 < v0 et d’après la question 1.(b), on a :

u1 <
√
u1v0︸ ︷︷ ︸
v1

< v0

ce qui démontre que : u0 < u1 < v1 < v0.

Ceci nous laisse penser que l’on va pouvoir démontrer par récurrence sur n ∈ N :

Hn : un < un+1 < vn+1 < vn

• Nous venons de faire l’initialisation.

• On suppose que un < un+1 < vn+1 < vn pour n ∈ N fixé. D’après la question 1.(a), on a :

un+1 <
un+1 + vn+1

2
< vn+1 ⇔ un+1 < un+2 < vn+1

et avec la question 1.(b) :
un+2 <

√
un+2vn+1 < vn+1 ⇔ un+2 < vn+2 < vn+1

On a bien démontré que :
un+1 < un+2 < vn+2 < vn+1

ce qui démontre que Hn+1 est vraie et termine la récurrence.

L’hypothèse de récurrence, nous apprend que (un) est strictement croissante et (vn) est strictement décroissante. De
plus :

∀n ∈ N, u0 ≤ un < vn ≤ v0

La suite (un) est croissante et majorée par v0 donc elle converge vers l ∈ R. La suite (vn) est décroissante et minorée
par u0 donc elle converge vers l′ ∈ R. Il reste à démontrer que l = l′ ainsi les suites (un) et (vn) seront adjacentes. Pour

cela, on passe à la limite dans la relation un+1 =
un + vn

2
pour obtenir l =

l + l′

2
, ce qui donne bien l = l′.

(un) et (vn) sont adjacentes

3. On suit l’indication de l’énoncé en posant α = Arccos
(a
b

)
, ce qui a un sens car

a

b
∈]0, 1[ puisque 0 < a < b. On a ainsi

α ∈
]
0,
π

2

[
. Cette relation est équivalente à cos(α) =

a

b
ou encore a = b cos(α). Explicitons les premiers termes des

suites en fonction de ce paramètre α afin d’avoir une idée de la formule à démontrer :

u0 = a = b cos(α), v0 = b

u1 =
u0 + v0

2
=
b cos(α) + b

2
= b

cos(α) + 1

2
= b cos2

(α
2

)
v1 =

√
u1v0 =

√
b cos2

(α
2

)
b = b cos

(α
2

)
Cela nous met sur la voie pour démontrer par récurrence sur n ∈ N que :

Hn : vn = b

n∏
k=1

cos
( α

2k

)
et un = vn cos

( α
2n

)
• L’initialisation a été faite.
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• On suppose que Hn est vérifiée pour n ∈ N fixé. On a :

un+1 =
un + vn

2
=
(
b

n∏
k=1

cos
( α

2k

))cos
(
α
2n

)
+ 1

2
=
(
b

n∏
k=1

cos
( α

2k

))
cos2

( α

2n+1

)
=
(
b

n+1∏
k=1

cos
( α

2k

))
cos
( α

2n+1

)

vn+1 =
√
un+1vn =

√√√√(b n+1∏
k=1

cos
( α

2k

))
cos
( α

2n+1

)
× b

n∏
k=1

cos
( α

2k

)
= b

n+1∏
k=1

cos
( α

2k

)
Ce qui démontre les formules annoncées au rang n+ 1 et termine la récurrence.

Au cours de ce calcul, on a simplifié les racines carrées et les carrés sans mettre de valeur absolue car tous les cosinus

mis en jeu sont positifs puisque α ∈
]
0,
π

2

[
. On remarque également que les sinus que l’on va utiliser juste après sont

également strictement positifs pour la même raison.

À présent, il reste à simplifier l’expression de (vn) afin d’en trouver plus facilement la limite, c’est-à-dire que l’on doit

simplifier le produit b

n∏
k=1

cos
( α

2k

)
. En multipliant par sin

( α
2n

)
et en utilisant la formule cos(a) sin(a) =

1

2
sin(2a), on

constate qu’il y a des simplifications en cascade. Plus précisément, démontrons par récurrence que :

Hn : vn = b
sin(α)

2n sin
(
α
2n

)
• Pour n = 0, la formule est vérifiée car v0 = b.

• On suppose que Hn est vraie pour n ∈ N fixé. On a :

vn+1 = b

n+1∏
k=1

cos
( α

2k

)

=
(
b

n∏
k=1

cos
( α

2k

))
× cos

( α

2n+1

)

= b
sin(α)

2n sin
(
α
2n

) × cos
( α

2n+1

)

= b
sin(α)

2n
×

cos
(

α
2n+1

)
sin
(
α
2n

)

= b
sin(α)

2n
×

cos
(

α
2n+1

)
2 sin

(
α

2n+1

)
cos
(

α
2n+1

)
= b

sin(α)

2n
× 1

2 sin
(

α
2n+1

)
= b

sin(α)

2n+1 sin
(

α
2n+1

)
Ce qui démontre la formule au rang n+ 1 et termine la récurrence.

Pour terminer l’exercice, nous allons utiliser la nouvelle expression de (vn) afin de déterminer la limite. Examinons le
dénominateur, on a :

2n sin
( α

2n

)
= α

sin
(
α
2n

)
α
2n

−→
n→+∞

α

en utilisant la limite classique lim
x→0

sin(x)

x
= 1.
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En reportant dans l’expression de (vn), il vient lim
n→+∞

vn = b
sin(α)

α
.

lim
n→+∞

un = lim
n→+∞

vn = b
sin(α)

α
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