
MPSI2 Exercices du cours 6 ITC

1 On fait appel aux fonctions suivantes avec n = 4, prévoir le résultat affiché.

1.

1 def T1(n):
2 print(n ∗ ”a”) # on affiche n fois le caractère a
3 if n > 0:
4 T1(n − 1)

2.

1 def T2(n):
2 if n > 0:
3 T2(n − 1)
4 print(n ∗ ”a”)

3.

1 def T3(n):
2 print(n ∗ ”a”)
3 if n > 0:
4 T3(n − 1)
5 print(n ∗ ”a”)

4.

1 def T4(n):
2 if n > 0:
3 T4(n − 1)
4 print(n ∗ ”a”)
5 if n > 0:
6 T4(n − 1)

2 La fonction suivante permet de savoir si un entier naturel est pair :

1 def pair(n):
2 while n > 0:
3 n = n − 2
4 if n == 0:
5 return(”pair”)
6 else :
7 return(”impair”)

Écrire une version récursive de cette fonction.

3 On considère la suite (un) définie par : u0 = 1

∀n ∈ N∗, un =
1

2

(
un−1 +

3

un−1

)
Écrire une fonction récursive qui calcule la valeur de (un) en fonction de l’entier naturel n.

Votre fonction devra avoir une complexité linéaire.

2025-2026



MPSI2 Exercices du cours 6 ITC

4 On considère la fonction récursive suivante :

1 def f(n):
2 print(n)
3 if n > 100:
4 return(n − 10)
5 else :
6 return(f(f(n + 11)))

Que vaut f(50) ?

5 À quoi peut servir la fonction suivante ?

1 def limite (n):
2 if n > 0:
3 limite (n − 1)
4 else :
5 print(”terminé”)

6 Le but de cet exercice est de générer une liste contenant les 2n sous-listes possibles d’une
liste contenant les entiers de 1 à n. Par exemple, on doit obtenir :

1 >>> parties([1,2,3,4])
2 [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4], [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4],

[2, 3, 4], [1, 2, 3, 4]]

On proposera une fonction récursive dont le principe est le suivant. On se donne une liste
E = J1, nK, les parties de E sont de deux types différents :

• celles ne contenant pas n, ce sont donc les parties de J1, n− 1K (c’est cela qui nous pousse
à faire un algorithme récursif).

• celles contenant n, ce sont donc les parties de J1, n− 1K auxquelles on ajoute l’élément n.

7 Trouver ce que fait la fonction suivante et écrire une version itérative de la fonction en
utilisant une boucle for.

1 def p(ch):
2 # ch est une chaine de caractères
3 n = len(ch)
4 if n <= 1:
5 return(True)
6 else :
7 return((ch[0] == ch[n − 1]) and (p(ch[1:n−1])))
8 # ch[1:n−1] est la chaine de caractères obtenue en enlevant le premier et le dernier caractère

2025-2026


