N O s W =

MPSI2 Exercices du cours 6

ITC

On fait appel aux fonctions suivantes avec n = 4, prévoir le résultat affiché.

1.

1 def T1(n):

2 print(n * "a”) # on affiche n fois le caractere a
3 if n > 0:

4 Tl(n — 1)
2.

1 def T2(n):

2 if n > 0:

3 T2(n — 1)
4 print(n % 7a”)
3.

1 def T3(n):

2 print(n * 7a”)
3 if n > 0:

4 T3(n — 1)
5 print(n * 7a”)
4.

1 def T4(n):

2 if n > 0:

3 T4(n — 1)
4 print(n % 7a”)
5 if n> 0:

6 T4(n — 1)

La fonction suivante permet de savoir si un entier naturel est pair :

def pair(n):
while n > 0:
n=mn-—2
if n==
return(” pair”)
else:
return(”impair”)

Ecrire une version récursive de cette fonction.

On considere la suite (u,) définie par :

UO:1
1
Vn € N*, u, = §(un,1 +

3

Un—1

)

Ecrire une fonction récursive qui calcule la valeur de (u,) en fonction de 'entier naturel n.

Votre fonction devra avoir une complexité linéaire.

2025-2026

g W N =

g W N

0 N U e W N =

MPSI2 Exercices du cours 6

ITC

On considere la fonction récursive suivante :

def f(n):
print (n)
if n > 100:
return(n — 10)
else:
return(f(f(n + 11)))

Que vaut f(50)?

A quoi peut servir la fonction suivante 7

def limite (n):
if n> 0:
limite (n — 1)
else :
print (” terminé”)

@ Le but de cet exercice est de générer une liste contenant les 2" sous-listes possibles d’une

liste contenant les entiers de 1 a n. Par exemple, on doit obtenir :

>>> parties([1,2,3,4])

2, 3, 4], [1, 2, 3, 4]]

0 [, @, [n,o2, @8, 1,38 23, [, 2,3, [, [, 4, 2, 4],

1, 2, 4], [3, 4],

(1, 3, 4],

On proposera une fonction récursive dont le principe est le suivant. On se donne une liste

E = [1,n], les parties de E sont de deux types différents :

e celles ne contenant pas n, ce sont donc les parties de [1,n — 1] (c’est cela qui nous pousse

a faire un algorithme récursif).

e celles contenant n, ce sont donc les parties de [[1,n — 1] auxquelles on ajoute ’élément n.

Trouver ce que fait la fonction suivante et écrire une version itérative de la fonction en

utilisant une boucle for.

def p(ch):
ch est une chaine de caracteres
n = len(ch)
if n<=1:
return(True)
else:
return((ch[0] == ch[n — 1]) and (p(ch[l:n—1])))

ch[l:n—1] est la chaine de caracteres obtenue en enlevant le premier et le dernier caractere

2025-2026

