Chapitre 7 : Nombres complexes

- 1. Quel est le module de $\frac{2-i}{2+i}$?
- 2. Représenter graphiquement les points M d'affixe z tels que :

$$1 < |z - 1 + i| \le 3$$

- 3. Donner la forme algébrique de $e^{\ln(3)+i\frac{\pi}{3}}$.
- 4. Soit $z = \sin(\theta) + i\cos(\theta)$ avec $\theta \in \mathbb{R}$. Le nombre complexe z est-il de module 1? Si oui, l'écrire sous forme exponentielle.
- 5. Vrai ou faux : \mathbb{U} est stable par somme.
- 6. En utilisant la formule du binôme de Newton, simplifier $(1-i)^4$.
- 7. Soit ω un nombre complexe non nul. Trouver tous les complexes z tels que $e^z=\omega$.

1. Quel est le module de $\frac{2-i}{2+i}$?

Réponse : C'est un calcul direct :

$$\left| \frac{2-i}{2+i} \right| = \frac{|2-i|}{|2+i|} = \frac{\sqrt{2^2 + (-1)^2}}{\sqrt{2^2 + 1^2}} = 1$$

2. Représenter graphiquement les points M d'affixe z tels que :

$$1 < |z - 1 + i| \le 3$$
.

Réponse : Cette double inégalité se décompose ainsi :

$$|z - (1 - i)| > 1$$
 et $|z - (1 - i)| \le 3$

Ainsi les points M correspondants se situent à l'extérieur du disque de centre C(1-i) de rayon 1 et à l'intérieur du disque de centre C(1-i) de rayon 3 (frontière comprise).

3/8

3. Donner la forme algébrique de $e^{\ln(3)+i\frac{\pi}{3}}$.

Réponse : Par définition :

$$e^{\ln(3)+i\frac{\pi}{3}} = e^{\ln(3)}e^{i\frac{\pi}{3}} = 3(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$$

4. Soit $z = \sin(\theta) + i\cos(\theta)$ avec $\theta \in \mathbb{R}$. Le nombre complexe z est-il de module 1? Si oui, l'écrire sous forme exponentielle.

Réponse : Le nombre complexe z est bien de module 1 car $|z| = \sqrt{\sin(\theta)^2 + \cos(\theta)^2} = 1$. On va transformer l'écriture du nombre complexe z pour le mettre sous forme exponentielle :

$$z = \sin(\theta) + i\cos(\theta)$$

$$= i(\cos(\theta) - i\sin(\theta))$$

$$= i(\cos(-\theta) + i\sin(-\theta))$$

$$= e^{\frac{i\pi}{2}}e^{-i\theta}$$

$$= e^{i(\frac{\pi}{2} - \theta)}$$

Chapitre 7 : Nombres complexes

5. Vrai ou faux : \mathbb{U} est stable par somme.

Réponse : C'est faux, la somme de deux nombres complexes de module 1 n'est pas forcément de module 1. Par exemple : 1+1=2 n'est pas de module 1.

6. En utilisant la formule du binôme de Newton, simplifier $(1-i)^4$.

Réponse : On utilise la formule du binôme de Newton pour développer :

$$(1-i)^4 = \frac{1}{2} \times 1^4 + \frac{4}{3} \times (-i) + \frac{6}{3} \times (-i)^2 + \frac{4}{3} \times (-i)^3 + \frac{1}{3} \times (-i)^4$$

Après simplifications cela donne : $(1-i)^4 = -4$.

7. Soit ω un nombre complexe non nul. Trouver tous les complexes z tels que $\mathbf{e}^z = \omega$.

Réponse : Notons z = a + ib avec $(a, b) \in \mathbb{R}^2$, on a :

$$e^z = \omega \Leftrightarrow e^a e^{ib} = \omega$$

On en déduit que $|\omega|=e^a$ d'où $a=\ln(|\omega|)$ et $b=\arg(\omega)$ $[2\pi]$. Finalement :

$$z = \ln(|\omega|) + i(\arg(\omega) + 2k\pi)$$

où $k \in \mathbb{Z}$.