N O O W=

MPST2 Cours 5 : Algorithmes dichotomiques ITC

e La méthode de dichotomie existe depuis I’Antiquité. Le mot dichotomie vient du grec et
signifie division en deux parties.

e Le principe est de partager la tache que 'on doit effectuer en deux parties et de poursuivre
I’algorithme sur 'une des deux parties, en utilisant a nouveau ce principe de dichotomie. La
dichotomie est aussi utilisée dans certaines preuves mathématiques.

e Dans ce cours, nous allons étudier les deux algorithmes dichotomiques qui sont au pro-
gramme : la recherche dichotomique dans une liste triée et ’exponentiation rapide.
L’avantage principal de ces algorithmes est d’améliorer la complexité des algorithmes classiques
effectuant les mémes taches.

1 Recherche dichotomique dans une liste triée

1.1 L’algorithme classique de recherche d’un élément dans une liste

e Il est tres fréquent, pour gérer I'immense masse de données dont nous disposons, de devoir
rechercher la présence ou non d’un élément dans une liste. Voici une fonction réalisant ceci :

def recherche(L, a):

7777 renvoie 17indice de 1’élément a dans la liste L, s’ il est présent et renvoie False sinon”””
n = len(L)
for i in range(n):

if L[i] == a:

return(i) # on renvoie 1’indice de 1’élément a
return(False) # si on a parcouru la liste sans trouver, on renvoie False

e On remarque que notre fonction renvoie False quand la liste est vide, ce qui est bien le
résultat souhaité.

e ’instruction a in L permet aussi de tester si ’élément a est dans la liste L mais le but de
ce paragraphe est de programmer par nous-méme cette tache.

e Pour évaluer la complexité de notre algorithme, il s’agit de compter le nombre de comparai-
sons entre L[i] et a en fonction de la longueur de la liste qui est notée n. Dans le pire des cas, si
I’élément a n’est pas dans la liste L ou s’il est placé en derniere position, nous devons parcourir
toute la liste et effectuer ainsi n comparaisons. On retiendra donc que :

Le cotiit de la recherche d’un élément dans une liste de taille n est en O(n)

De plus, le fait que les éléments de la liste soient triés, par exemple dans 'ordre croissant, ne
changera pas cette complexité avec cet algorithme.

e L’intérét de la méthode dichotomique que nous allons & présent étudier est d’accélérer
grandement cette recherche.

1.2 Explication du principe

e La méthode de la recherche dichotomique n’est pas applicable qu’a une condition préalable
que 'on supposera vérifiée dans toute la suite :

la liste est triée dans ’ordre croissant

2025-2026

(=2 B B V) M

[e |

10
11
12

13
14

15

MPST2 Cours 5 : Algorithmes dichotomiques ITC

e Voyons le principe sur un exemple. On considére la liste triée L = [15, 16, 18,19, 23, 24, 28, 29, 31, 33|
et on cherche si I’élément 28 est dans cette liste.

» On compare 28 avec I’élément central de la liste, ici 23, comme

28 > 23, on sait que 28 se situe éventuellement dans la partie droite de la liste.

» On se concentre alors sur la sous-liste [24, 28,29, 31, 33], on prend le milieu, 29, et
comme 28 < 29, on sait que 28 se situe éventuellement dans la sous-liste de gauche [24, 28].
» Le milieu de la sous-liste [24, 28] est 24 et comme 24 < 28, on sait que 28 se situe
éventuellement dans la sous-liste de droite réduite & [28].

» On compare enfin 28 avec le milieu de la liste [28], comme c’est égal, on a trouvé 28 et
on renvoie son indice. Si 'on avait cherché ’élément 27 le procédé aurait été identique, seule
la conclusion change.

e On remarque que lorsque ’on considere le milieu de la liste, on arrondit a I'indice inférieur.
A chaque étape, la nouvelle liste que ’on regarde est au moins de longueur deux fois moindre que
la liste précédente.

1.3 L’algorithme

e Le principe se comprend bien mais la fagon de ’écrire n’est pas aisée car il faut faire attention
aux indices utilisés et aux cas particuliers comme celui d’une liste vide ou d’une liste réduite a un
élément. D’ailleurs, comme ’écrivait Donald Knuth, le pionnier de I’algorithmique :

Although the basic idea of binary search is comparatively straightforward, the details can be
surprisingly tricky, and many good programmers have done it wrong the first few times they tried.

e Voici une version de I'algorithme de recherche dichotomique dans une liste triée :

def dicho(L, a):
7?7recherche si 1’élément a est présent dans la liste triée dans 1’ordre croissant L et renvoie un
indice si c’est le cas et False sinon”””
g=0
d =1len(L) — 1
7# g et d sont les indices des bornes de la sous—liste dans laquelle on cherche notre élément
7+ ces bornes vont évoluer a chaque étape, selon que 1’on choisisse la sous—liste de gauche ou de
droite
while g <= d: # tant que la sous—liste examinée n’est pas vide
m = (g + d) // 2 # lindice du milieu du tableau
if Llm] == a: # on a trouvé a
return(m) # on renvoie I'indice et cela termine la fonction
elif L{m] < a: # a se situe peut—étre dans la partie de droite
g = m + 1 # on change la borne de gauche de notre sous—liste pour considérer la sous—liste de
droite
else: # a se situe peut—eétre dans la partie de gauche
d = m — 1 # on change la borne de droite de notre sous—liste pour considérer la sous—liste de
gauche
return(False) # si on arrive ici, c’est que 1’élément n’a pas été trouvé

2025-2026

MPSI2 Cours 5 : Algorithmes dichotomiques ITC

e Cet algorithme est a parfaitement comprendre et a savoir réécrire, vous aurez ’occasion de
travailler avec en TD et en TP. Poursuivons ’étude théorique de cet algorithme en justifiant la
terminaison, la correction et en étudiant la complexité.

1.4 Validité et complexité

Dans ce paragraphe, nous allons résumer les résultats a connaitre sur cet algorithme de re-
cherche dans une liste triée. Les preuves rigoureuses de ces résultats sont a comprendre également
mais elles sont écrites a la fin de ce document dans la partie Annexe.

1.4.1 Complexité

La complexité de 'algorithme de recherche d’un élément dans une liste triée est logarithmique,
en O(logy(n)) si n désigne la longueur de la liste.

e On peut expliquer ce résultat, sans rigueur, de la facon suivante. Prenons une liste de
longueur n = 2P avec p € N. Dans le pire des cas, on cherche un élément qui n’appartient pas a
la liste initiale. A chaque passage dans la boucle while la taille de notre liste est divisée au moins
par 2. Ainsi, il faut environ p étapes pour se retrouver avec la liste vide et sortir de la boucle
while. Or p = logy(n) donc il y a environ logy(n) passages dans la boucle d’ou la complexité en

O(logy(n)).

e La base dans laquelle on écrit le logarithme n’a aucune importance, puisque tous les loga-
rithmes sont égaux & une constante pres, ainsi on peut juste écrire que la complexité est O(log(n)).

e (C’est bien entendu un gain tres important par rapport a l'algorithme classique qui est en
O(n) mais il faut garder en téte que notre méthode demande que la liste soit triée au préalable.
1.4.2 Terminaison

e C’est lié a la complexité étudiée précédemment, en effet le nombre de passages dans la
boucle while est fini donc ’algorithme se termine. Pour étre plus rigoureux, on peut démontrer
ceci exhibant un variant de boucle :

La quantité d — g + 1 qui représente la taille de la sous-liste que 'on examine pour trouver
I’élément a est un variant de boucle.

1.4.3 Correction

e On peut montrer que 'algorithme renvoie le résultat attendu en trouvant un invariant de
boucle.

Notre invariant de boucle est :

P : 7siae€ L alors a se situe entre les indices g et d (inclus)”

e On démontre dans la partie Annexe que cette propriété est vraie initialement et reste vraie
a chaque itération de la boucle. Lorsque 'on sort de la boucle, on a g > d ainsi on en déduit que
a n’est pas dans L, ce qui justifie la valeur False que 'on renvoie alors.

2025-2026

[N S I

0 N O g e W N =

MPST2 Cours 5 : Algorithmes dichotomiques ITC

2 Exponentiation rapide

e Le but du probleme est de calculer a” ol a est un flottant et n € N*. On cherche la complexité
de ce probleme en terme de multiplications selon la donnée en entrée : n. En effet, on suppose
que 'opération a X a ne dépend pas de la valeur de a.

2.1 Méthode naive

e Cela consiste a utiliser la définition a = a X a X ... X a. On a 'algorithme suivant :
—_————

n fois

def expl(a, n):
P=1
for i in range(n):
P=P=xa
return(P)

e Cet algorithme présente une complexité en O(n). Nous allons voir qu'’il est possible de
I’améliorer.

2.2 Amélioration : exponentiation rapide

e I’algorithme qui suit est basé sur la remarque :

n n—1

a" = (a?)2 si n est pair
a" =a(a®)"2 sin est impair

On peut écrire une fonction qui utilise ce principe :

def exporapide(a, n):

r =1
while n > 0:
if n % 2 == 1: # cas ou n est impair

r =71 % a # on se rameéne alors & un exposant pair en multipliant par a
a=ax*afan=(a"2)"(n//2)
n=mn//2

return(r)

e Voila un exemple qui décrit le fonctionnement de I’algorithme pour a = 2 et n = 10.

r=1 r=1 r=4 r=4 r=1024
a=2 — a=4 — a=16 — a=256 — a = 256
n =10 n=>5 n =2 n=1 n=>0

Vous pouvez vérifier qu’avec ce procédé, nous avons effectué 6 multiplications.

2025-2026

MPST2 Cours 5 : Algorithmes dichotomiques ITC

2.3 Validité et complexité

Nous avons démontré dans l’exercice 5 du cours 4 que cet algorithme se termine et donne le
bon résultat. Je vous y renvoie pour les détails de ces preuves. En résumé, on a :

e L’algorithme se termine car n est un variant de boucle puisque c’est un entier qui décroit
strictement a chaque passage dans la boucle.

e L’expression r X a™ est un invariant de boucle car cette quantité ne varie pas lors d’un
passage dans la boucle. Comme initialement elle vaut a” et qu’a la fin de la boucle, c’est-a-dire
quand n = 0, elle vaut r alors r = a™ et on renvoie bien le résultat attendu.

e Enfin, en ce qui concerne la complexité de cet algorithme, elle est également en O(log(n))
ou n est 'exposant. Nous ne ferons pas la preuve détaillée de ceci car 1'idée est la méme que
dans l'algorithme de recherche d’un élément dans une liste triée. En effet, a chaque itération de
la boucle, la puissance n devient n//2 donc elle est au minimum divisée par 2 (tout comme la
longueur de notre tableau est au minimum divisée par 2). Cette complexité logarithmique est bien
meilleure que la complexité linéaire de I’algorithme naif.

Remarques : i) C’est avec cette méthode d’exponentiation rapide que Python effectue des
élévations a une puissance.

it) Si l’on considére la décomposition binaire de n :

d
n= ZdiQi avec : ¥i € [0,d], d; € {0,1}
=0
on a:
d . d . d .
a® = azi:() d;2" _ Hadﬂl — H(aT)di
=0 i=0

Cette écriture met en évidence le fait que le nombre de multiplications a effectuer est de l’ordre
de grandeur du nombre de chiffres dans [’écriture en binaire de n, c’est-a-dire de logy(n).

3 Annexe

On considere ’algorithme de recherche d’un élément dans une liste triée que nous avons donné
dans le paragraphe 1.3. Pour étudier la complexité de cet algorithme, il est important de savoir
combien de passages dans la boucle while nous allons effectuer, en fonction de la longueur, n de
la liste. Ce nombre de passages est variable car la fonction peut se terminer des le premier passage
dans la boucle dans le cas ot L[m] = a, c’est pour cela que nous allons examiner le nombre de
passages dans le pire des cas.

3.1 Complexité

e La présence de la boucle while ne nous permet pas de savoir facilement a ’avance combien
de passages dans la boucle vont étre effectués. On se place dans le pire des cas, c’est-a-dire celui
ou I’élément recherché ne se trouve pas dans le tableau et est supérieur a tous les éléments du
tableau, ce qui fait que I'on choisira systématiquement la sous-liste de droite qui est de longueur
supérieure ou égale a la sous-liste de gauche.

e Pour comprendre le principe, placons-nous dans le cas idéal ot le nombre d’éléments de
notre liste est de la forme 27 — 1 avec p € N*. Dans I'algorithme, on retire ’élément central et on
partage les 2P — 2 éléments restants en deux sous-listes ayant donc chacune 2P~! — 1 éléments. On
recommence ensuite le procédé avec la sous-liste de gauche ou de droite. La puissance de 2 mise
en jeu diminue de 1 & chaque étape ainsi au bout de p étapes la sous-liste étudiée est vide (ce qui
correspond & g > d) et on sort de la boucle while.

2025-2026

MPST2 Cours 5 : Algorithmes dichotomiques ITC

e Par exemple, si 'on commence avec une liste contenant 127 éléments, on passe a 63, 31, 15,
7,3, 1 et enfin 0 élément. C’est d’ailleurs facile a vérifier en ajoutant la commande print(d—g+1)
entre les lignes 7 et 8 de notre algorithme, ceci en remarquant que d — g + 1 est bien le nombre
d’éléments de la sous-liste commencant a l’'indice g et se terminant a l’indice d.

e Dans le cas général, en notant toujours n le nombre d’éléments de la liste, on se donne p € N
tel que : 2 —1 < n < 2°7! — 1. Dans le pire des cas, la boucle while est parcourue au
plus p+1 fois. En effet, on sait & présent que dans le pire des cas, il y a p+ 1 itérations pour une
liste de longueur 2P — 1 et donc nécessairement moins d’itérations pour une liste de longueur
moindre. En résumé :

si 2P —1<n<2% —1 alors il y a au plus p + 1 passages dans la boucle while
e De facon, plus explicite, on a :
P 1<n<2P 1e2?ant1 <22 o p<logy(n) <p+1

Ceci implique que p est la partie entiere de logy(n) ou la partie entiere de logy(n) + 1. Dans les
deux cas, on en déduit que :
P’algorithme se termine

e Au sein d’une boucle while, le nombre d’opérations est fini et il y a |logy(n) | ou |logy(n)+1]
passages dans la boucle.

La complexité est logarithme en O(logy(n))

3.1.1 Terminaison

Montrons, comme annoncé dans le paragraphe 1.4.2, que la quantité d — g + 1 est un variant
de boucle. Cette quantité est bien un entier naturel puisque d et g restent des entiers naturels. De
plus, d — g + 1 décroit strictement & chaque passage dans la boucle. En effet, notons d’ et ¢’ les
nouvelles valeurs de d et g aprés une itération de la boucle et montrons que d —¢' +1 < d—g+1.
Il y a deux cas :

e Soit ¢ =m+1avecm=(d+g)//2 et d =d (le cas du elif) et :
d—g¢+1=d—((d+g)//24+1)+1<d—g+1
car (d+g¢g)//2+ 1 > g puisque d > g.
e Soit ¢ =getd =m—1avecm=(d+g)//2 (le cas du else) et :
d—gd+1=d+g)//)2-1-g+1<d—g+1
car (d+g)//2 — 1 < d puisque d > g.
La décroissante stricte est bien démontrée et nous sommes bien en présence d’un variant de
boucle. La boucle while se termine.
3.1.2 Correction

On utilise I'invariant de boucle donné dans le cours :
P : 7sia € L alors a se situe entre les indices g et d (inclus)”

e Avant de rentrer dans la boucle, on a g =0 et d = len(L) — 1 et il est clair que si a est dans
la liste alors son indice est entre 0 et len(L) — 1.

e On suppose la propriété vraie au début du corps de la boucle, montrons qu’elle reste vraie
a la fin de la boucle. 1l y a trois cas a examiner :

2025-2026

MPST2 Cours 5 : Algorithmes dichotomiques ITC

» Si L{m| = a, on a trouvé 1’élément et on renvoie son indice donc la fonction renvoie
le bon résultat et notre invariant de boucle ne sert pas.

» Si L[m] < a, comme notre liste est triée, si I’élément a est dans la liste alors c’est
nécessairement dans la partie droite de la liste donc encore entre les indices g et d avec g qui a
changé de valeur puisque g = m + 1. La propriété reste donc vérifiée.

» Si L[m] > a, comme notre liste est triée, si I’élément a est dans la liste alors c’est
nécessairement dans la partie gauche de la liste donc encore entre les indices g et d avec d qui a
changé de valeur puisque d = m — 1. La propriété reste donc vérifiée.

e Lorsque I'on sort de la boucle, on a g > d donc si a est dans la liste, il se situe entre les
indices g et d donc dans la liste vide. Ceci n’est pas possible donc a n’est pas dans la liste et on
renvoie False comme attendu.

2025-2026

