
MPSI2 Colle 7 : Nombres complexes 2025-2026

1 FFF Soit n ∈ N∗. Soit ω une racine n-ième de l’unité, simplifier

n−1∑
k=0

(k + 1)ωk.

Corrigé : • Traitons tout d’abord le cas où ω = 1. On a :

n−1∑
k=0

(k + 1)ωk =

n−1∑
k=0

(k + 1) =

n∑
k=1

k =
n(n+ 1)

2

• On suppose dans la suite ω 6= 1. Notons S =

n−1∑
k=0

(k + 1)ωk et simplifions la quantité (1− ω)S. On a :

(1− ω)S = S − ωS =

n−1∑
k=0

(k + 1)ωk − ω
n−1∑
k=0

(k + 1)ωk =

n−1∑
k=0

(k + 1)ωk −
n−1∑
k=0

(k + 1)ωk+1 =

n−1∑
k=0

(k + 1)ωk −
n∑
k=1

kwk

La plupart des termes peuvent se regrouper sauf ceux correspondant à k = 0 dans la première somme et à k = n dans la
seconde somme. Cela donne :

(1− ω)S = 1− nωn +

n−1∑
k=1

(
(k + 1)ωk − kωk

)
= 1− n+

n−1∑
k=1

ωk = −n+

n−1∑
k=0

ωk = −n

Au cours du calcul de la ligne précédente, nous avons utilisé le fait que ωn = 1 et

n−1∑
k=0

ωk =
ωn − 1

ω − 1
= 0.

Finalement (1− ω)S = −n donc S = − n

1− ω
.

n−1∑
k=0

(k + 1)ωk =


n(n+ 1)

2
si ω = 1

− n

1− ω
si ω 6= 1

2 F Résoudre l’équation |z + 1| = |z|+ 1 d’inconnue z ∈ C.

Corrigé : Notons z = a+ ib avec (a, b) ∈ R2. On a :

|z + 1| = |z|+ 1⇔
√

(a+ 1)2 + b2 =
√
a2 + b2 + 1⇔ (a+ 1)2 + b2 = a2 + b2 + 2

√
a2 + b2 + 1

On préserve bien l’équivalence en élevant au carré car les nombres mis en jeu sont positifs. On simplifie pour obtenir

a =
√
a2 + b2, c’est équivalent à a ≥ 0 et a2 = a2 + b2 d’où b = 0. Finalement :

S = R+
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3 F Soit n ∈ N∗, simplifier
∑
z∈Un

|z − 1|.

Corrigé : On connait l’écriture explicite des éléments de Un, ce qui nous permet de réécrire la somme :

S =

n−1∑
k=0

|e 2ikπ
n − 1|

Pour simplifier cette somme, nous pouvons utiliser la technique de l’angle moitié :

S =

n−1∑
k=0

|e ikπn (e
ikπ
n − e

−ikπ
n )|S =

n−1∑
k=0

|e ikπn | ×
∣∣∣2i sin

(kπ
n

)∣∣∣ =

n−1∑
k=0

2
∣∣∣ sin(kπ

n

)∣∣∣
Ceci en utilisant le fait que e

ikπ
n et isont de module 1. D’autre part, on a : 0 ≤ k ≤ n− 1 donc 0 ≤ kπ

n
≤ (n− 1)π

n
< π

donc sin
(kπ
n

)
≥ 0 et on peut enlever la valeur absolue et on obtient :

S = 2

n−1∑
k=0

sin
(kπ
n

)

On retrouve alors un exercice connu, on remarque que S est égal au double de la partie imaginaire de

n−1∑
k=0

e
ikπ
n . Calculons

cette dernière somme :

T =

n−1∑
k=0

e
ikπ
n =

n−1∑
k=0

(e
iπ
n )k =

(e
iπ
n )n − 1

e
iπ
n − 1

=
−2

e
iπ
n − 1

=
−2

e
iπ
2n (e

iπ
2n − e−iπ

2n )
= −2e−

iπ
2n

1

2i sin( π2n )
= i
(

cos
( π

2n

)
−i sin

( π
2n

)) 1

sin( π2n )

La partie imaginaire de cette expression vaut
cos( π2n )

sin( π2n )
= cotan

( π
2n

)
.

Finalement, en multipliant par le facteur 2, il vient :∑
z∈Un

|z − 1| = 2cotan
( π

2n

)

4 F Déterminer le lieu des points M d’affixe z qui sont alignés avec les points I d’affixe i et M ′ d’affixe iz. Déterminer
également le lieu des points M ′.

Corrigé : • Remarquons tout d’abord que si z = i alors les points M , I et M ′ sont alignés puisque M et I sont
confondus. Dans la suite de l’étude prenons z 6= i.

On a :

M, I et M ′ alignés⇔MI et M ′I colinéaires⇔ i− iz
i− z

∈ R

On pose z = x+ iy avec (x, y) ∈ R2. On a :

i− iz
i− z

=
i− i(x+ iy)

i− x− iy
=

y + i(1− x)

−x+ i(1− y)
=

(y + i(1− x))(−x− i(1− y))

(−x+ i(1− y))(−x− i(1− y)
=
−xy + (1− x)(1− y) + i(x(x− 1) + y(y − 1))

x2 + (1− y)2

Ce nombre complexe est réel si et seulement si sa partie imaginaire est nulle, c’est-à-dire : −x+x2 + y2− y = 0. On peut
reconnaitre l’équation d’un cercle puisque l’on peut réécrire :(

x− 1

2

)2
+
(
y − 1

2

)2
=

1

2
⇔
∣∣∣z − (1

2
+

1

2
i
)∣∣∣2 =

1

2
⇔
∣∣∣z − (1

2
+

1

2
i
)∣∣∣ =

1√
2

On reconnait l’équation du cercle de centre Ω d’affixe
1

2
+

1

2
i et de rayon

1√
2

.
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Le lieu recherché est le cercle de centre Ω d’affixe
1

2
+

1

2
i et de rayon

1√
2

• L’affixe de M ′ est l’image de l’affixe de M par la multiplication par i, géométriquement cela correspond à

la rotation de centre l’origine du repère et d’angle
π

2
. L’image du cercle de centre Ω d’affixe

1

2
+

1

2
i et de rayon

1√
2

est le

cercle de centre Ω d’affixe −1

2
+

1

2
i et de rayon

1√
2

.

5 F Soit θ ∈ R et n ∈ N. Simplifier Cn =

n∑
k=0

(
n

k

)
cos(kθ) et Sn =

n∑
k=0

(
n

k

)
sin(kθ).

Corrigé : L’idée va être de regrouper les cosinus et les sinus pour pouvoir utiliser l’exponentielle complexe. On a :

Cn + iSn =

n∑
k=0

(
n

k

)
(cos(kθ) + i sin(kθ)) =

n∑
k=0

(
n

k

)
eikθ =

n∑
k=0

(
n

k

)
(eiθ)k1n−k = (eiθ + 1)n

On reconnait une situation où il faut utiliser la technique de l’angle moitié :

Cn + iSn =
(
e
iθ
2 (e

iθ
2 + e

−iθ
2 )
)n

= e
inθ
2 2n cos

(θ
2

)n
= 2n

(
cos
(nθ

2

)
+ i sin

(nθ
2

))
cos
(θ

2

)n
On identifie les parties réelles et imaginaires pour obtenir :

Cn = 2n cos
(nθ

2

)
cos
(θ

2

)n
et Sn = 2n sin

(nθ
2

)
cos
(θ

2

)n

6 Donner la forme algébrique de z =
(1 + j)7

j5
.

Corrigé : On a 1 + j + j2 = 0 donc 1 + j = −j2, d’autre part j3 = 1. Ces deux remarques nous permettent de faire le
calcul suivant :

z =
(1 + j)7

j5
=

(−j2)7

j3j2
=

(−j2)7

j3j2
= −j

14

j2
= −j12 = −(j3)4 = −1

z = −1

3 Chapitre 7



MPSI2 Colle 7 : Nombres complexes 2025-2026

7 F Soit β ∈ R et n ∈ N∗, déterminer le module et un argument de z = (1 + cos(β) + i sin(β))n.

Corrigé : En utilisant la technique de l’angle moité, on a :

z = (1 + cos(β) + i sin(β))n = (1 + eiβ)n =
(
ei
β
2 (ei

β
2 + e−i

β
2 )
)n

= ei
nβ
2 × 2n × cos

(β
2

)n
Trois cas peuvent se présenter :

• si cos
(β

2

)n
= 0 alors z = 0. Le module est nul et on ne peut pas donner un argument de 0.

• si cos
(β

2

)n
> 0 alors |z| = 2n × cos

(β
2

)n
et
nβ

2
est un argument de z.

• si cos
(β

2

)n
< 0, on peut réécrire :

z =
(
− 2n × cos

(β
2

)n)
×
(
− ei

nβ
2

)
=
(
− 2n × cos

(β
2

)n)
︸ ︷︷ ︸

≥0

×
(
ei
nβ
2 +iπ

)

Dans ce cas le module de z vaut −2n × cos
(β

2

)n
et un argument de z est

nβ

2
+ π.

8 FF Soient a et b deux nombres complexes tels que ab̄ 6= 1. On pose z =
a− b
1− ab̄

.

1. Démontrer que :
|z| = 1⇔ |a| = 1 ou |b| = 1

2. De même, trouver une condition nécessaire et suffisante pour que |z| < 1.

Corrigé :

1. On raisonne par équivalences :

|z| = 1 ⇔ zz̄ = 1

⇔ a− b
1− ab̄

× ā− b̄
1− āb

⇔ (a− b)(ā− b̄) = (1− ab̄)(1− āb)

⇔ aā− ab̄− bā+ bb̄ = 1− ab̄− bā+ aābb̄

⇔ 1 + |a|2|b|2 − |a|2 − |b|2 = 0

⇔ (|a|2 − 1)(|b|2 − 1) = 0

⇔ |a| = 1 ou |b| = 1

9 F Donner le module et argument des deux nombres complexes suivants où n ∈ N∗ :

z1 = − sin(2θ) + 2i cos(θ)2 et z2 =
( 3− i

1− 2i

)n
Corrigé : • On a :

z1 = −2 sin(θ) cos(θ) + 2i cos(θ)2

= 2 cos(θ)(− sin(θ) + i cos(θ))

= 2 cos(θ)
(

cos
(
θ +

π

2

)
+ i sin

(
θ +

π

2

))
= 2 cos(θ)ei(θ+

π
2 )
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Ainsi le module de z1 vaut 2| cos(θ)|. Pour un argument, il y a 3 cas :

I si cos(θ) = 0, z1 n’ pas d’argument.

I si cos(θ) > 0, z1 a pour argument θ +
π

2
.

I si cos(θ) < 0, z1 a pour argument θ +
3π

2
.

• On a :

z2 =
( 3− i

1− 2i

)n
=
( (3− i)(1 + 2i)

(1− 2i)(1 + 2i)

)n
= (1 + i)n =

√
2
n
ein

π
4

Le module de z2 vaut 2
n
2 , un argument de z2 est n

π

4
.

10 F Résoudre l’équation suivante, sachant qu’elle possède une solution réelle :

iz3 + (−1 + 2i)z2 − (4 + i)z + 3(−1 + 2i) = 0

Corrigé : Soit x réel, x est solution de l’équation si et seulement si :

ix3 + (−1 + 2i)x2 − (4 + i)x+ 3(−1 + 2i) = 0

Dans cette expression qui est égale à 0, les parties réelles et imaginaires sont nulles donc :{
−x2 − 4x− 3 = 0
x3 + 2x2 − x+ 6 = 0

On résout sans problème la première équation qui a pour solutions −1 et −3. Par contre, seul −3 est solution de la
seconde équation. On en déduit que z = −3 est l’une des solutions de l’équation de départ, ce qui nous permet de factoriser
l’expression par z + 3. Cela donne :

iz3 + (−1 + 2i)z2 − (4 + i)z + 3(−1 + 2i) = 0 = (z + 3)(iz2 + (−1− i)z + (−1 + 2i))

On applique la méthode habituelle pour trouver les racines du polynôme de degré 2 restant, on obtient 1 − 2i et i. Les
solutions de l’équation de départ sont −3, i et 1− 2i.

11 FF Dans le plan complexe, placer les points M d’affixe z tels que :

z2 − (1 + i)2 = z̄2 − (1− i)2

Corrigé : Notons z = x+ iy avec (x, y) ∈ R2. On a :

z2 − (1 + i)2 = z̄2 − (1− i)2 ⇔ z2 − z̄2 = (1 + i)2 − (1− i)2

⇔ (z + z̄)(z − z̄) = 4i

⇔ 2x× 2iy = 4i

⇔ xy = 1

L’ensemble recherché est la courbe d’équation y =
1

x
(une hyperbole).
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12 F Pour n ∈ N∗, trouver tous les nombres complexes z tels que (
√

3 + 3i)zn = −6.

Corrigé : On transforme tout d’abord l’équation pour se ramener une forme zn = ω que l’on sait résoudre à l’aide des
racines n-ième de l’unité. On a :

(
√

3 + 3i)zn = −6⇔ zn =
−6√
3 + 3i

⇔ zn = −6(
√

3− 3i)

12
⇔ zn = −

√
3− 3i

2

On doit ensuite écrire −
√

3− 3i

2
sous forme exponentielle, ce qui donne en calculant le module qui vaut

√
3 :

−
√

3− 3i

2
=
√

3
(
− 1

2
+ i

√
3

2

)
=
√

3e
2iπ
3

Il reste à résoudre l’équation en utilisant les racines n-ième de l’unité :

zn =
√

3e
2iπ
3 ⇔

( z

3
1
2n e

2iπ
3n

)n
= 1

⇔ ∃k ∈ J0, n− 1K,
z

3
1
2n e

2iπ
3n

= e
2ikπ
n

⇔ ∃k ∈ J0, n− 1K, z = 3
1
2n e

2ikπ
n + 2iπ

3n

Ainsi l’ensemble des solutions est :

S =
{

3
1
2n e2iπ

1+3k
3n , k ∈ J0, n− 1K

}

13 FF On définit le sinus d’un nombre complexe de la façon suivante :

∀z ∈ C, sin(z) =
eiz − e−iz

2i

Résoudre l’équation sin(z) = 2.

Corrigé : On utilise la définition de l’énoncé, on résout l’équation par équivalences :

sin(z) = 2 ⇔ eiz − e−iz

2i
= 2

⇔ eiz − e−iz = 4i

⇔ X − 1

X
= 4i (en posant X = eiz)

⇔ X2 − 4iX − 1 = 0 (on sait résoudre cette équation, le discriminant vaut − 12)

⇔ X = (2 +
√

3)i ou X = (2−
√

3)i

⇔ eiz = (2 +
√

3)i ou eiz = (2−
√

3)i

On sait résoudre l’équation eiz = (2 +
√

3)i puisque l’on a appris en cours à résoudre l’équation ez = ω où ω ∈ C∗. On
procède de même pour trouver :

iz = ln(2 +
√

3) + i
π

2
+ 2ikπ, avec k ∈ Z

De même pour l’équation eiz = (2−
√

3)i qui nous donne :

iz = ln(2−
√

3) + i
π

2
+ 2ikπ, avec k ∈ Z

Il reste à diviser par i pour obtenir les solutions suivantes :

S =
{π

2
+ 2kπ − i ln(2±

√
3), k ∈ Z

}

6 Chapitre 7



MPSI2 Colle 7 : Nombres complexes 2025-2026

14 FFF Simplifier le nombre complexe z suivant en l’écrivant sous forme exponentielle :

z =
1 + cos(a) + i sin(a)√

1 + sin(2a) + i
√

1− sin(2a)
avec a ∈

]
0,
π

4

[

Corrigé : On commence par réécrire le numérateur avec la technique de l’angle moitié :

1 + cos(a) + i sin(a) = 1 + eia = 2ei
a
2 cos

(a
2

)
Pour le dénominateur, on utilise les formules cos2(a) + sin2(a) = 1 et sin(2a) = 2 sin(a) cos(a), ce qui donne :√

1 + sin(2a) + i
√

1− sin(2a) =

√
cos2(a) + sin2(a) + 2 sin(a) cos(a) + i

√
cos2(a) + sin2(a)− 2 sin(a) cos(a)

=
√

(cos(a) + sin(a))2 + i
√

(cos(a)− sin(a))2

= | cos(a) + sin(a)|+ i| cos(a)− sin(a)|

= cos(a) + sin(a) + i(cos(a)− sin(a))

=
√

2
( 1√

2
cos(a) +

1√
2

sin(a)
)

+ i
√

2
( 1√

2
cos(a)− 1√

2
sin(a)

)
=
√

2
(

cos
(π

4
− a
)

+ i sin
(π

4
− a
))

=
√

2e
i

(
π
4−a
)

Ce calcul a pu être fait en remarquant notamment que cos(a) + sin(a) > 0 et cos(a)− sin(a) > 0 car a ∈
]
0,
π

4

[
.

On termine le calcul :

z =
2ei

a
2 cos

(
a
2

)
√

2e
i

(
π
4−a
) =

√
2 cos

(a
2

)
e
i

(
3a
2 −

π
4

)

C’est la forme exponentielle recherchée car
√

2 cos
(a

2

)
> 0 puisque a ∈

]
0,
π

4

[
.

z =
√

2 cos
(a

2

)
e
i

(
3a
2 −

π
4

)

15 F. On se place dans le plan complexe et on considère les points A, B et C d’affixes respectives z, z2 et z3 avec
z ∈ C. Déterminer tous les nombres complexes z tels que ABC soit un triangle rectangle.

Corrigé : Il n’est pas précisé en quel point le triangle est rectangle, ce qui fait 3 cas à étudier. Avant tout remarquons
que si z = 0 ou z = 1 alors les trois points sont confondus, ce qui nous donne un triangle rectangle particulier. Prenons dans
toute la suite z ∈ C \ {0, 1} ainsi les différents dénominateurs ne s’annuleront pas.

• Le triangle est rectangle en A si et seulement si
−−→
AB et

−→
AC sont orthogonaux, ce qui se traduit par :

z3 − z
z2 − z

∈ iR⇔ z + 1 ∈ iR⇔ Re(z) = −1

L’image dans le plan complexe de cet ensemble de points est la droite d’équation x = −1.

• Le triangle est rectangle en B si et seulement si
−−→
BA et

−−→
BC sont orthogonaux, ce qui se traduit par :

z3 − z2

z − z2
∈ iR⇔ −z ∈ iR⇔ Re(z) = 0
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L’ensemble recherché est ici l’axe des imaginaires purs.

• Le triangle est rectangle en C si et seulement si
−−→
CB et

−→
CA sont orthogonaux, ce qui se traduit par :

z − z3

z2 − z3
∈ iR⇔ 1 + z

z
∈ iR⇔ 1 +

1

z
∈ iR

Posons z = x+ iy avec (x, y) ∈ R2. On a :

1 +
1

z
= 1 +

x− iy
x2 + y2

=
x2 + y2 + x− iy

x2 + y2

Ce nombre est imaginaire pur si et seulement si sa partie réelle est nulle, c’est-à-dire :

x2 + y2 + x = 0

On transforme cette équation pour faire apparaitre l’équation d’un cercle :(
x+

1

2

)2
+ y2 =

(1

2

)2
Il s’agit du cercle de centre

(
− 1

2
, 0
)

et de rayon
1

2
.

En conclusion, le lieu géométrique recherché est l’union des deux droites trouvées et du cercle.

16 FF.

1. Donner une écriture exponentielle de z1 et z2.

2. Donner la forme algébrique et une forme exponentielle de z =
z1
z2

.

3. En déduire les valeurs de cos
( π

12

)
et sin

( π
12

)
.

Corrigé :

1. On a |z1| =
√

(2
√

6)2 + (2
√

6)2 = 4
√

3 ainsi :

z1 = 4
√

3
( 1√

2
+ i

1√
2

)
= 4
√

3ei
π
4

On a |z2| =
√

(
√

2)2 + (
√

6)2 = 2
√

2. Ce qui permet d’avoir :

z2 = 2
√

2
(1

2
+ i

√
3

2

)
= 2
√

2ei
π
3

En résumé :

z1 = 4
√

3ei
π
4 et z2 = 2

√
2ei

π
3

2. D’une part, en utilisant les formes algébriques données dans l’énoncé, on a :

z =
z1
z2

=
2
√

6(1 + i)√
2(1 + i

√
3)

= 2
√

3
(1 + i)(1− i

√
3)

4
=

√
3

2
((1 +

√
3) + i(1−

√
3))

D’autre part, en utilisant la question précédente, on a :

z1
z2

=
4
√

3ei
π
4

2
√

2ei
π
3

=
√

6e−i
π
12

Finalement, on a :

z =

√
3

2
((1 +

√
3) + i(1−

√
3)) =

√
6e−i

π
12
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3. Dans les deux écritures trouvées précédemment, on identifie les parties réelles et imaginaires :

√
3

2
(1 +

√
3) =

√
6 cos

(
− π

12

)
et

√
3

2
(1−

√
3) =

√
6 sin

(
− π

12

)
En simplifiant :

cos
( π

12

)
=

1 +
√

3

2
√

2
=

√
2 +
√

6

4
et sin

( π
12

)
=

√
3− 1

2
√

2
=

√
6−
√

2

4

cos
( π

12

)
=

√
2 +
√

6

4
et sin

( π
12

)
=

√
6−
√

2

4
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