MPSI2 DS4 Mathématiques le 15/12/24

Probleme 1

L’objectif de ce probleme est d’étudier la densité de certaines suites.
Soit z € R, on note |x| la partie entiere de z. On appelle partie décimale de x le réel défini par :

M(z) =2 — |z|

Sauf mention contraire, les suites considérées commencent a I'indice n = 0, ainsi on notera (u,,) au lieu de (uy)n>0-
Soit (uy) une suite d’éléments de 'intervalle [0, 1], on dit que la suite (uy,) est dense dans [0, 1] si elle visite tout
intervalle non trivial de [0, 1], ¢’est-a-dire :

Y(a,b) € [0,1[* tels que 0 < a < b < 1, Ing €N, uy, € [a,d]

Dans la partie C' concernant la suite (cos(n)), on adaptera la définition de densité présentée ci-dessus en remplacant
I'intervalle [0, 1] par l'intervalle [—1, 1].

On rappelle que 7 est irrationnel et on pourra utiliser ce résultat sans justification.

Les différentes parties sont dans une large mesure indépendantes, cependant la caractérisation des sous-groupes
additifs de R obtenue a la question 6 de la partie B sera utilisée dans la partie C.

A-Premiers exemples

1. Démontrer que pour tout x € R, on a M(x) € [0, 1].
2. Soit z € R. Pour tout n € N, on pose u,, = M (nz).

(a) On suppose que = € Z, que dire de la suite (uy,)?

(b) Dans cette question, on prend = € Q.

2
i. Soit © = —, décrire le comportement de la suite (u,). On commencera par donner les 12 premiers
termes de la suite.

ii. On pose z = P o (p,q) € Z x N*. Démontrer que (u,) est une suite périodique de période q.
q
iii. En déduire que (uy) n’est pas dense dans [0, 1].

3. On dit qu’une suite réelle positive (a,) est a croissance lente si et seulement si (a,) est croissante,

lim a, =+4ocoet lim (ant1 —an) =0.
n——+oo n—-+0oo

(a) Les suites suivantes sont-elles a croissance lente ? On justifiera dans chaque cas la réponse.
i. (n?).
ii. (v/n).
iii. (In(n))p>1-

(b) Soit (a,) une suite réelle positive & croissance lente. On se donne (a,b) € [0,1[* tels que 0 < a < b < 1 et
b—a
2
i. Justifier qu’il existe N € N tel que : Vn > N, |apt1 — an| < e.
ii. On pose A = |ax] + 1. Justifier qu’il existe N’ > N tel que ays > A+ 1.

iii. Démontrer qu’il existe ng € N tel que ap, € [A+a, A+b]. On pourra représenter ay, ays et 'intervalle
[A+ a, A+ b] sur 'axe réel et remarquer que 'intervalle [A 4 a, A + b] est de longueur 2e.

iv. En déduire que (M (ay)) est dense dans [0, 1].

v. En déduire deux exemples de suites denses dans U'intervalle [0, 1[.

on note € =
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B-Sous-groupes additifs de R

On appelle sous-groupe additif de R un sous-groupe de R pour la loi + (I’addition usuelle sur les réels). Si o € R,
on note aZ = {an, n € Z}. On rappelle également qu’'une partie A de R est dite dense dans R si et seulement si pour
tous ¢ < d des réels, il existe z € A tel que ¢ < x < d.

1. Montrer que pour tout a € R, aZ est un sous-groupe additif de R. Les sous-groupes additifs de R de cette forme
sont appelés monogenes.

2. Montrer que Q est un sous-groupe additif dense dans R.
3. Soit H un sous-groupe additif de R non réduit a {0}.
(a) Justifier que H NIRY est non vide, en déduire que H NR’, possede une borne inférieure notée a dans toute
la suite.

(b) Démontrer que a > 0.
4. Dans cette question, on suppose que a > 0.

a) Justifier que 2a n’est pas un minorant de H NR* . En déduire qu’il existe z1 € H tel que a < 21 < 2a.
_l’_
ontrer que s1 r1 > a, alors 1l existe xrg € el que a < 9 < 71 < Za.
b) Montrer que si , alors il exist H tel q < 2
(
(

)

) En examinant x; — xo, démontrer que x1 > a est absurde. En déduire que a € H.
d) Démontrer que aZ C H.
)
)

c
(e) Soit x € H, montrer que : x — [EJCL € [0, a[. En déduire que z € aZ.
(f) Conclure que H = aZ.
5. On suppose ici que a = 0. On considere également ¢ < d des réels.
(a) Montrer qu'il existe z € H tel que 0 <z < d —c.
(b) En déduire que [c,d] N H # (.

6. En déduire qu'un sous-groupe additif de R est monogene ou dense dans R.

C-Application a Uétude de la suite (cos(n))

1. Dans cette question, on démontre que la suite de terme général u,, = cos(n) diverge. On raisonne par ’absurde
en supposant qu’il existe un réel [ tel que lir}g Uy = 1.
—+00

n
(a) Justifier que : Vn > 1, up41 + up—1 = 2uy, cos(1).
(b) En déduire que | = 0.
(c) Justifier que : Vn >0, ug, = 2uZ — 1.

)

(d) En déduire que la suite (u,) diverge.
2. On pose Y = {cos(n), n € N} et nous allons démontrer que Y est dense dans [—1,1].
(a) On note Z + 27Z = {p + 2nq, (p,q) € Z*}. Démontrer que c’est un sous-groupe additif de R.
(b) Démontrer que Z + 27Z ne peut s’écrire aZ ou « € R. En déduire que Z + 277 est dense dans R.

)
)
(c) Montrer que si x € Z + 2nZ, alors cos(x) € Y.
(d) En déduire que Y est dense dans [—1,1].

1 1
3. Soit I € [—1,1], démontrer que pour tout n € N, [l - =+ —} NY est un ensemble infini. En déduire qu’il
n n

existe une extractrice ¢ telle que lim cos(p(n)) = 1.
n—+o0o
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D-FEtude de la suite (M (nx))

Cette partie reprend ’étude de la suite (M (nx)) avec x € R commencée dans la question 2 de la partie A. On
suppose ici que x est irrationnel.

1. Démontrer que Z + xZ est dense dans R.
2. En déduire que la suite (M (nz)) est dense dans [0, 1].

On a ainsi démontré que la suite (M (nx)) est dense dans [0, 1] si et seulement si x est irrationnel.

3. Une application.

(a) Démontrer que log(2) est irrationnel ou log désigne le logarithme en base 10.

(b) En déduire que quelque soit la séquence de chiffres considérée, il existe une puissance de 2 dont ’écriture
en base 10 a pour premiers chiffres cette séquence.

E-Nombre d’or et nombres de Pisot

Soit un réel x > 1. Pour tout entier naturel n, on pose v, = z" — [z"|. Nous allons voir qu’il est possible que x

1+5

soit irrationnel sans que (vy,) soit dense dans [0, 1]. Soit ¢ = 5

1. Démontrer que pour tout n € N, ¢" + est un entier naturel. On pourra effectuer, par exemple, une

1
()"

récurrence double sur n.

=0.

2. Démontrer que lim
n—+oo (=)™

3. En déduire que si = ¢ alors la suite (v,) n’est pas dense dans [0, 1].
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Probléeme 2

Dans tout 'exercice (A, +, x) désigne un anneau commutatif non nul. On note 0 et 1 les éléments neutres
respectifs de I’addition et de la multiplication. Pour tous (z,y) € A2, on s’autorise & noter zy au lieu de = x y. On
dit qu'une partie, I, de A est un idéal de A si et seulement si les trois conditions suivantes sont vérifiées :

yoel
i) V(z,y) € I*, 2 +y el
H)VAe A, Veel, \e el

1. Un exemple. On se place dans 'anneau F(R,R) des fonctions de R dans R muni de 'addition et de la
multiplication usuelles sur les fonctions. Pour tout a € R, on pose :

I, ={f € F(R,R), f(a) =0}
Démontrer que I, est un idéal de F(R,R).
2. Idéaux de Z. Dans cette question, on considere 'anneau Z muni de ’addition et la multiplication usuelles.

(a) Soit n € Z, démontrer que nZ = {nk, k € Z} est un idéal de Z.
(b) Soit I un idéal de Z. On suppose que I # {0}.

i. Justifier que n = min(I N N*) existe.
ii. Soit a € I, démontrer que le reste de la division euclidienne de a par n est nul. En déduire que I C nZ.

iii. Réciproquement démontrer que nZ C I.
(c) Caractériser les idéaux de Z.

3. Idéaux et éléments inversibles. Démontrer que si I est un idéal de A alors :

I contient un élément inversible < I = A

4. Idéaux et morphismes. Soit f : A — A un morphisme d’anneaux, avec A un anneau également commutatif
et non nul.

(a) Soit J un idéal de A, démontrer que f~'(.J) est un idéal de A.
(b) Trouver un exemple montrant que si I est un idéal de A, f(I) n’est pas toujours un idéal de A.
5. Radical d’un idéal. Soit I un idéal de A. On appelle radical de I et on note VI I’ensemble :
VI={zec A, Ine N, z" eI}

(a) Démontrer que I C V1.
(

)
b) Démontrer que VT est un idéal de A. On pensera a utiliser la formule du binéme de Newton.
)

(¢) Vérifier que \/ VT = V/T.
(d) Dans cette question A = Z. Déterminer ’ensemble des entiers naturels m € Z tels que VmZ = mZ.

6. Idéaux premiers. On dit qu'un idéal I est premier si et seulement si :
V(z,y) € A*, zycI=xclouyecl

(a) Donner un idéal premier de Z.

(b) On suppose que tous les idéaux de A sont premiers. Démontrer que A est integre puis que A est un corps.



