- 1-Trouver toutes les solutions sur $I = \mathbb{R}$ de (E) : xy' + y = 0.
- 2-Trouver toutes les solutions sur $I = \mathbb{R}$ de (E) : xy' y = 0.
- 3-Donner la méthode pour trouver une solution particulière de (E): $y' + 2y = (x^2 + 1) \operatorname{sh}(2x)$ (on ne fera pas le calcul explicite).
- 4-On considère l'équation différentielle (E): ay'' + by' + cy = 0 où $(a,b,c) \in \mathbb{K}^3$. Soit $r \in \mathbb{K}$, montrer que $f: x \mapsto e^{rx}$ est une solution particulière de (E) sur \mathbb{R} si et seulement si r est racine d'un polynôme que l'on précisera.
- 5-On considère (E): ay'' + by' + cy = d où $(a, b, c, d) \in \mathbb{K}^4$. Donner une solution évidente de (E) dans le cas où $c \neq 0$, puis dans le cas où c = 0 et $b \neq 0$ et enfin dans le cas où c = 0, b = 0 et $a \neq 0$.

1-Trouver toutes les solutions définies sur $\mathbb R$ de l'équation différentielle (E): xy'+y=0.

Réponse : • Sur \mathbb{R}_+^* ou \mathbb{R}_-^* les solutions sont de la forme : $x \mapsto \frac{\lambda}{x}$ où $\lambda \in \mathbb{R}$.

• Analyse. Si f est une solution de (E) dérivable sur \mathbb{R} , alors il existe $(\lambda,\mu)\in\mathbb{R}^2$ tels que :

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{\lambda}{x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ \frac{\mu}{x} & \text{si } x < 0 \end{cases}$$

Par continuité de f en 0, on doit avoir :

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0) = 0$$
, c'est-à-dire :

$$\lim_{x \to 0^-} \frac{\mu}{x} = \lim_{x \to 0^+} \frac{\lambda}{x} = 0$$

Ceci impose $\lambda = \mu = 0$, ce qui implique que f est la fonction nulle.

• Synthèse. La fonction nulle est clairement une solution de (E) sur $\mathbb{R}.$

2-Trouver toutes les solutions définies sur $\mathbb R$ de l'équation différentielle (E): xy'-y=0.

Réponse : • Sur \mathbb{R}_+^* ou \mathbb{R}_-^* les solutions sont de la forme : $x \mapsto \lambda x$ où $\lambda \in \mathbb{R}$.

• Analyse. Si f est une solution de (E) dérivable sur \mathbb{R} , alors il existe $(\lambda,\mu)\in\mathbb{R}^2$ tels que :

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \lambda x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ \mu x & \text{si } x < 0 \end{cases}$$

Par continuité de f en 0, on doit avoir :

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 0$$
, c'est-à-dire :

$$\lim_{x \to 0^-} \mu x = \lim_{x \to 0^+} \lambda x = 0$$

Ceci est le cas pour tous λ et μ donc cela ne donne aucune condition.

On examine la dérivabilité en 0, on doit avoir :

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}, \text{ c'est-à-dire}:$$

$$\lim_{x \to 0^-} \frac{\mu x}{x} = \lim_{x \to 0^+} \frac{\lambda x}{x}$$

Ce qui nous donne la condition $\lambda = \mu$. Finalement $f: x \mapsto \lambda x$ définie sur \mathbb{R} .

Chapitre 6 : Équations différentielles linéaires

AR6-2

• **Synthèse.** On vérifie immédiatement que $x \mapsto \lambda x$ est solution de (E) sur \mathbb{R} pour tout $\lambda \in \mathbb{R}$.

3-Donner la méthode pour trouver une solution particulière de (E) : $y' + 2y = (x^2 + 1) \operatorname{sh}(2x)$ (on ne fera pas le calcul explicite).

Réponse : • On trouve cherche une solution particulière de (E_1) $y'+2y=\frac{1}{2}(x^2+1)e^{2x}$ sous la forme :

$$y_1: x \mapsto (\alpha_1 x^2 + \beta_1 x + \gamma_1)e^{2x}$$
, car $a \neq -k$

• On trouve cherche une solution particulière de

$$(E_2)$$
 $y' + 2y = \frac{1}{2}(x^2 + 1)e^{-2x}$ sous la forme :

$$y_2: x \mapsto (\alpha_2 x^3 + \beta_2 x^2 + \gamma_2 x + \delta_2)e^{-2x}$$
, car $a = -k$

D'après le principe de superposition, une solution particulière de (E) est $y_1 - y_2$.

4-On considère l'équation différentielle (E): ay'' + by' + cy = 0 où $(a,b,c) \in \mathbb{K}^3$. Soit $r \in \mathbb{K}$, montrer que $f: x \mapsto e^{rx}$ est une solution particulière de (E) sur \mathbb{R} si et seulement si r est racine d'un polynôme que l'on précisera.

Réponse : On a :

f solution de (E)
$$\Leftrightarrow \forall x \in \mathbb{R}, \ ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

 $\Leftrightarrow ar^2 + br + c = 0$
 $\Leftrightarrow r \text{ est racine du polynôme } aX^2 + bX + c$

5-On considère (E): ay'' + by' + cy = d où $(a, b, c, d) \in \mathbb{K}^4$. Donner une solution évidente de (E) dans le cas où $c \neq 0$, puis dans le cas où c = 0 et $b \neq 0$ et enfin dans le cas où c = 0, b = 0 et $a \neq 0$.

Réponse : • Si $c \neq 0$, la fonction $x \mapsto \frac{d}{c}$ est solution sur \mathbb{R} .

• Si c = 0 et $b \neq 0$, l'équation devient : (E) : ay'' + by' = d, la fonction $x \mapsto \frac{d}{h}x$ convient.

• Si c=0, b=0 et $a\neq 0$, l'équation devient : (E): ay''=d, la fonction $x\mapsto \frac{d}{2a}x^2$ convient.