$$2$$
 \bigstar Résoudre l'équation : $2x \ln(x) + 3(x-1) = 0$.

Corrigé : On pose $f: x \mapsto 2x \ln(x) + 3(x-1)$ définie et dérivable sur \mathbb{R}_+^* et :

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = 2\ln(x) + 2 + 3 = 2\ln(x) + 5$$

La fonction f' s'annule en $e^{-\frac{5}{2}}$, on en déduit que f est strictement décroissante sur $]0, e^{-\frac{5}{2}}[$ et strictement croissante sur $[e^{-\frac{5}{2}}, +\infty[$. De plus, sachant que $\lim_{x\to 0} x \ln(x) = 0$, on a $\lim_{x\to 0} f(x) = -3$ et $\lim_{x\to +\infty} f(x) = +\infty$. D'après le théorème des valeurs intermédiaires, grâce à la stricte monotonie et aux limites connues, on en déduit que f s'annule une unique fois sur \mathbb{R}_+^* . On constate que f(1) = 0 d'où :

$$S = \{1\}$$

- $\boxed{3}$ \heartsuit Déterminer les limites suivantes :
 - 1. $\lim_{x \to +\infty} \frac{e^{2x}(\ln(x)^3)}{x^4}$.
 - 2. $\lim_{x\to 0^+} x^2 (\ln(x^3))^3$.
 - 3. $\lim_{x \to -\infty} x^3 e^x (\ln(-x))^2.$

Corrigé : Dans chaque cas, on transforme l'écriture pour faire apparaître des limites qui se calculent avec les résultats usuels de croissances comparées.

1. On a
$$\frac{e^{2x}(\ln(x)^3)}{x^4} = \frac{e^{2x}}{x^4}(\ln(x))^3 = e^x \frac{e^x}{x^4}(\ln(x))^3$$
. Or $\lim_{x \to +\infty} \frac{e^x}{x^4} = +\infty$, $\lim_{x \to +\infty} (\ln(x))^3 = +\infty$ et $\lim_{x \to +\infty} e^x = +\infty$, on en déduit que :

$$\lim_{x \to +\infty} \frac{e^{2x}(\ln(x)^3)}{x^4} = +\infty$$

2. On a $x^2(\ln(x^3))^3 = x^2(3\ln(x))^3 = 27x^2(\ln(x)^3) = 27\left(x^{\frac{2}{3}}\frac{3}{2}\ln(x^{\frac{2}{3}})\right)^3$. Or $\lim_{X\to 0}X\ln(X) = 0$ d'après les résultats usuels de croissances comparées, en appliquant ceci à $X = x^{\frac{2}{3}}$, on a :

$$\lim_{x \to 0^+} x^2 (\ln(x^3))^3 = 0$$

3. On a $x^3 e^x (\ln(-x))^2 = x^5 e^x \frac{(\ln(-x))^2}{(-x)^2} = x^5 e^x \left(\frac{\ln(-x)}{-x}\right)^2$. Or $\lim_{x \to -\infty} x^5 e^x = 0$ et $\lim_{x \to -\infty} \frac{\ln(-x)}{-x} = 0$. On en déduit que :

$$\lim_{x \to -\infty} x^3 e^x (\ln(-x))^2 = 0$$

4 ♡★★

- 1. Démontrer que : $\forall t \in \mathbb{R}, |\sin(t)| \leq |t|$.
- 2. En déduire tous les réels x et y tels que : $\begin{cases} \sin(x+y) &= 2x \\ \sin(x-y) &= 2y \end{cases}$.

Corrigé:

- 1. La fonction sin est à valeurs dans [-1,1], ainsi pour $t \in]-\infty,-1] \cup [1,+\infty[$ l'inégalité est évidente car dans ce cas $|t| \geq 1$.
 - On démontre sans problème, en étudiant la fonction $f: t \mapsto \sin(t) t$ sur [0,1], que pour tout $t \in [0,1]$, $\sin(t) \le t$ (cette inégalité est d'ailleurs valable sur \mathbb{R}_+).
 - Enfin, pour $t \in [-1, 0]$, on a $-t \in [0, 1]$ donc d'après le cas précédent : $\sin(-t) \le -t$, c'est-à-dire $-\sin(t) \le -t$ ce qui donne bien $|\sin(t)| \le |t|$ étant donné que $\sin(t) \le 0$ et $t \le 0$ pour $t \in [-1, 0]$. Finalement, on a bien démontré que :

$$\forall t \in \mathbb{R}, \ |\sin(t)| \le |t|$$

2. L'inégalité de la question précédente permet d'écrire que pour tout $t \in \mathbb{R}$, $\sin(t)^2 \le t^2$. Pour résoudre le système proposé, on procède par analyse-synthèse en se donnant une solution $(x,y) \in \mathbb{R}^2$ du système :

$$4x^{2} + 4y^{2} = \sin(x+y)^{2} + \sin(x-y)^{2} \le (x+y)^{2} + (x-y)^{2}$$

Ce qui est équivalent à :

$$4(x^2 + y^2) \le 2(x^2 + y^2)$$

On en déduit que $x^2 + y^2 = 0$, ce qui implique x = y = 0. La synthèse est évidente, x = 0 et y = 0 est une solution.

$$\mathcal{S} = \{(0,0)\}$$

5 ★★★

- 1. Montrer que pour tout $(x, y) \in \mathbb{R}^2$ tels que 0 < x < y, on a : $\frac{y x}{\ln(y) \ln(x)} < \frac{x + y}{2}$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{k}{\ln\left(1+\frac{1}{k}\right)} < \frac{n(n+1)(4n+5)}{12}$.

Corrigé:

1. L'inégalité à démontrer est équivalente à :

$$2(y-x) < (x+y)(\ln(y) - \ln(x)) \Leftrightarrow 2\left(\frac{y}{x} - 1\right) < \left(1 + \frac{y}{x}\right)\ln\left(\frac{y}{x}\right) \Leftrightarrow 2(t-1) < (1+t)\ln(t) \Leftrightarrow \ln(t) > 2\frac{t-1}{t+1}$$

Ceci en posant $t = \frac{y}{x}$, on a t > 1 car 0 < x < y. On procède par étude de fonction en posant :

$$\begin{array}{cccc} f & : & [1, +\infty[& \rightarrow & \mathbb{R} \\ & t & \mapsto & \ln(t) - 2\frac{t-1}{t+1} \end{array}$$

La fonction f est dérivable sur son ensemble de définition et :

$$\forall t \in [1, +\infty[, \ f'(t) = \frac{1}{t} - 2\frac{(t+1) - (t-1)}{(t+1)^2} = \frac{1}{t} - \frac{4}{(t+1)^2} = \frac{(t+1)^2 - 4t}{t(t+1)^2} = \frac{(t-1)^2}{t(t+1)^2}$$

La dérivée est strictement positive sur $]1, +\infty[$, on en déduit que f est strictement croissante sur $[1, +\infty[$. De plus f(1) = 0 donc f est strictement positive sur $]1, +\infty[$ et on en déduit l'inégalité voulue.

2. Soit $n \in \mathbb{N}^*$ et $k \in [1, n]$. On applique l'inégalité précédente avec x = k et y = k + 1 et on somme les inégalités pour obtenir :

$$\sum_{k=1}^{n} \frac{k}{\ln\left(1+\frac{1}{k}\right)} = \sum_{k=1}^{n} k \frac{(k+1)-k}{\ln(k+1)-\ln(k)} < \sum_{k=1}^{n} k \frac{k+(k+1)}{2} = \sum_{k=1}^{n} k^2 + \frac{1}{2} \sum_{k=1}^{n} k$$

On utilise les valeurs connues de ces deux sommes :

$$\sum_{k=1}^{n} k^2 + \frac{1}{2} \sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \frac{n(n+1)}{2} = \frac{n(n+1)(4n+5)}{12}$$

$$\sum_{k=1}^{n} \frac{k}{\ln\left(1 + \frac{1}{k}\right)} < \frac{n(n+1)(4n+5)}{12}$$

$$\alpha a^{\frac{1}{\alpha}} + \beta b^{\frac{1}{\beta}} \ge (\alpha + \beta)(ab)^{\frac{1}{\alpha + \beta}}$$

Étudier le cas d'égalité.

Corrigé: L'inégalité à démontrer se réécrit:

$$\forall (a,b,\alpha,\beta) \in (\mathbb{R}_+^*)^2, \ \alpha e^{\frac{1}{\alpha}\ln(a)} + \beta e^{\frac{1}{\beta}\ln(b)} \ge (\alpha+\beta)e^{\frac{1}{\alpha+\beta}\ln(ab)}$$

Simplifions un peu l'écriture en notant $u = \ln(a)$ et $v = \ln(b)$, l'inégalité à démontrer devient :

$$\alpha e^{\frac{u}{\alpha}} + \beta e^{\frac{v}{\beta}} \ge (\alpha + \beta) e^{\frac{u+v}{\alpha+\beta}}$$

On fixe $u \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ et on étudie la fonction :

$$\begin{array}{cccc} f & : & \mathbb{R} & \to & \mathbb{R} \\ & v & \mapsto & \alpha e^{\frac{u}{\alpha}} + \beta e^{\frac{v}{\beta}} - (\alpha + \beta) e^{\frac{u+v}{\alpha + \beta}} \end{array}$$

Le but est de démontrer que f est positive sur \mathbb{R} . La fonction f est dérivable sur \mathbb{R} est :

$$\forall v \in \mathbb{R}, \ f'(v) = e^{\frac{v}{\beta}} - e^{\frac{u+v}{\alpha+\beta}}$$

Par stricte croissance de la fonction exponentielle, on a :

$$f'(v) > 0 \Leftrightarrow \frac{v}{\beta} > \frac{u+v}{\alpha+\beta} \Leftrightarrow \alpha v > \beta u \Leftrightarrow v > \frac{\beta u}{\alpha}$$

On en déduit le tableau des variations de f:

$$\begin{array}{c|cccc}
v & -\infty & \frac{\beta u}{\alpha} & +\infty \\
\hline
f'(v) & - & 0 & + \\
f & \searrow & \nearrow
\end{array}$$

De plus:

$$f\left(\frac{\beta u}{\alpha}\right) = \alpha e^{\frac{u}{\alpha}} + \beta e^{\frac{u}{\alpha}} - (\alpha + \beta)e^{\frac{u + \frac{\beta u}{\alpha}}{\alpha + \beta}} = \alpha e^{\frac{u}{\alpha}} + \beta e^{\frac{u}{\alpha}} - (\alpha + \beta)e^{\frac{u}{\alpha}} = 0$$

On en déduit que pour tout $v \in \mathbb{R}, f(v) \geq 0$, d'où l'inégalité demandée.

D'après l'étude précédente, il y a égalité dans l'inégalité si et seulement si $v = \frac{\beta u}{\alpha}$. Explicitons cette condition :

$$v = \frac{\beta u}{\alpha} \Leftrightarrow \ln(b) = \frac{\beta}{\alpha} \ln(a) \Leftrightarrow \alpha \ln(b) = \beta \ln(a) \Leftrightarrow b^{\alpha} = a^{\beta}$$

7 $\heartsuit \bigstar \bigstar$ Trouver tous les réels x tels que : $2^{4\cos^2(x)+1} + 16 \times 2^{4\sin^2(x)-3} = 20$.

Corrigé : Soit $x \in \mathbb{R}$, on procède par équivalences :

$$2^{4\cos^2(x)+1} + 16 \times 2^{4\sin^2(x)-3} = 20 \quad \Leftrightarrow \quad 2^{4\cos^2(x)+1} + 16 \times 2^{1-4\cos^2(x)} = 20$$

$$\Leftrightarrow \quad 2^{4\cos^2(x)} - 10 + 16 \times 2^{-4\cos^2(x)} = 0 \qquad \text{(on a divis\'e par 2)}$$

$$\Leftrightarrow \quad 2^{4\cos^2(x)} - 10 + \frac{16}{2^4\cos^2(x)} = 0$$

$$\Leftrightarrow \quad \left(2^{4\cos^2(x)}\right)^2 - 10 \times 2^{4\cos^2(x)} + 16 = 0 \qquad \text{(on a multipli\'e par } 2^{4\cos^2(x)})$$

$$\Leftrightarrow \quad 2^{4\cos^2(x)} \text{ est solution de l'\'equation } X^2 - 10X + 16 = 0$$

$$\Leftrightarrow \quad 2^{4\cos^2(x)} = 2 \text{ ou } 2^{4\cos^2(x)} = 8$$

$$\Leftrightarrow \quad 4\cos^2(x) = 1 \text{ ou } 4\cos^2(x) = 3$$

$$\Leftrightarrow \quad \cos(x) = \frac{1}{2} \text{ ou } \cos(x) = -\frac{1}{2} \text{ ou } \cos(x) = \frac{\sqrt{3}}{2} \text{ ou } \cos(x) = -\frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \quad x = \frac{\pi}{3} \left[2\pi \right] \text{ ou } x = -\frac{\pi}{3} \left[2\pi \right] \text{ ou } x = \frac{2\pi}{3} \left[2\pi \right] \text{ ou } x = \frac{-2\pi}{3} \left[2\pi \right] \text{ ou } x = \frac{\pi}{6} \left[2\pi \right] \text{ ou } x = \frac{\pi}{6} \left[2\pi \right] \text{ ou } x = \frac{\pi}{6} \left[2\pi \right] \text{ ou } x = \frac{-5\pi}{6} \left[2\pi \right]$$

$$\Leftrightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Leftrightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Rightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Rightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Rightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Rightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$

$$\Rightarrow \quad x = \frac{\pi}{6} \left[\frac{\pi}{2} \right] \text{ ou } x = \frac{\pi}{3} \left[\frac{\pi}{2} \right]$$