
MPSI2 Colle 15 (Limites et continuité) 2025-2026

1 Déterminer lim
x→+∞

√
x2 + 2x+ 2−

√
x2 + x+ 3.

Corrigé : Pour x ≥ 0, les expressions sous les racines carrées sont définies et en utilisant la méthode de la quantité
conjuguée, il vient : √

x2 + 2x+ 2−
√
x2 + x+ 3 =

(x2 + 2x+ 2)− (x2 + x+ 3)√
x2 + 2x+ 2 +

√
x2 + x+ 3

=
x− 1√

x2 + 2x+ 2 +
√
x2 + x+ 3

=
1− 1

x√
1 + 2

x + 2
x2 +

√
1 + 1

x + 3
x2

La dernière expression n’est plus une forme indéterminée, on obtient :

lim
x→+∞

√
x2 + 2x+ 2−

√
x2 + x+ 3 =

1

2

2 ⋆ Soit f : R → R une application telle que :

lim
x→+∞

f(x)(1− f(x)) =
1

4

Montrer que lim
x→+∞

f(x) =
1

2
.

Corrigé : Pour x ∈ R, on a :(
f(x)− 1

2

)2

= f(x)2 − f(x) +
1

4
= −f(x)(1− f(x)) +

1

4

En passant à la limite dans la dernière expression, on voit que :

lim
x→+∞

(
f(x)− 1

2

)2

= 0

En composant par la fonction racine carrée, nous obtenons : lim
x→+∞

f(x)− 1

2
= 0, c’est-à-dire :

lim
x→+∞

f(x) =
1

2

3 Montrer que la fonction f définie sur R par f : x 7→ x− E(x) n’a pas de limite, ni finie, ni infinie en +∞.

Corrigé : Pour n ∈ N, on définit deux suites :

un = n et vn = n+
1

2

Pour tout n ∈ N, on a :

f(un) = 0 −→
n→+∞

0 et f(vn) =
1

2
−→

n→+∞

1

2

D’après le théorème de caractérisation séquentielle de la limite, on en déduit que f n’a pas de limite en +∞.

f n’a pas de limite en +∞

1
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4 Déterminer lim
x→+∞

x− E(x)

x+ E(x)
.

Corrigé : On va utiliser le théorème d’encadrement, pour x ≥ 1, on a :

0 ≤ x− E(x) < 1 et x ≤ x+ E(x)

On en déduit que pour tout x ≥ 1 :

0 ≤ x− E(x)

x+ E(x)
≤ 1

x

Étant donné que lim
x→+∞

1

x
= 0, d’après le théorème d’encadrement, on en déduit que :

lim
x→+∞

x− E(x)

x+ E(x)
= 0

5 ⋆ Trouver toutes les applications f : R → R continues sur R telles que :

∀x ∈ R, f(x)2 = x2 + 1

Corrigé : • Analyse. Soit f une fonction qui vérifie la relation, pour tout x ∈ R, on a :

f(x) = −
√
x2 + 1 ou f(x) =

√
x2 + 1

On va démontrer que l’on est tout le temps dans le premier cas ou tout le temps dans le second cas. Par l’absurde, s’il existe

(a, b) ∈ R2 tels que f(a) = −
√
a2 + 1 et f(b) =

√
b2 + 1. On a f(a) < 0, f(b) > 0 et f continue sur R, d’après le théorème

des valeurs intermédiaires, il existe c ∈ R tel que f(c) = 0. C’est contradictoire car f ne prend pas la valeur 0. On en déduit
que :

∀x ∈ R, f(x) = −
√
x2 + 1 ou ∀x ∈ R, f(x) =

√
x2 + 1

• Synthèse. On vérifie que les deux applications définies ci-dessus conviennent.

Il y a deux applications qui conviennent :
f : R → R

x 7→ −
√

x2 + 1
ou

f : R → R
x 7→

√
x2 + 1

6 ⋆ Montrer que l’application suivante est majorée :

f : R → R

x 7→ 1

(x− 1)10 + (x− 2)12

Corrigé : Remarquons déjà que la fonction f est correctement définie sur R car pour que le dénominateur s’annule,
il faudrait que x soit égal à 0 et à 1 en même temps. On va majorer la fonction f sur différents intervalles afin de pouvoir
conclure :

• Pour x ∈ [2,+∞[, on a x− 1 ≥ 1 et x− 2 ≥ 0 d’où :

f(x) ≤ 1

110 + 012
= 1

• Pour x ∈]−∞, 1], on a : 1− x ≥ 0 et 2− x ≥ 1 d’où :

f(x) ≤ 1

010 + 112
= 1

2
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• Sur le segment [1, 2], la fonction est continue donc f est bornée. En particulier, il existe M ∈ R tel que :

∀x ∈ [1, 2], f(x) ≤ M

Finalement :
∀x ∈ R, f(x) ≤ max(1, C)

f est majorée sur R

7 ⋆ Soit f : R → R continue sur R telle que f|Q soit croissante. Montrer que f est croissante sur R.

Corrigé : Soient (x, y) ∈ R2 tels que x < y, il s’agit de démontrer que f(x) ≤ f(y). On sait qu’il existe une suite de
rationnels (xn) qui tend vers x et une suite de rationnels yn qui tend vers y. En appliquant la définition de la limite avec

ε =
y − x

2
> 0, on a :

∃n1 ∈ N, ∀n ≥ n1, |xn − x| ≤ ε ⇔ ∃n1 ∈ N, ∀n ≥ n1, −ε+ x ≤ xn ≤ ε+ x ⇔ ∃n1 ∈ N, ∀n ≥ n1,
3x− y

2
≤ xn ≤ y + x

2

∃n2 ∈ N, ∀n ≥ n2, |yn − y| ≤ ε ⇔ ∃n2 ∈ N, ∀n ≥ n2, −ε+ y ≤ yn ≤ ε+ y ⇔ ∃n2 ∈ N, ∀n ≥ n2,
x+ y

2
≤ yn ≤ 3y − x

2

On en déduit que pour tout n ≥ max(n1, n2), on a : xn ≤ yn et la fonction f étant croissante sur Q, cela donne
f(xn) ≤ f(yn). On peut passer à la limite grâce à la continuité de f pour obtenir : f(x) ≤ f(y).

f est croissante sur Q

8 Soit f : R → R continue sur R s’annulant en tout point de Q. Montrer que f = 0.

Corrigé : La fonction nulle et la fonction f sont continues et cöıncident sur Q. D’après le corollaire du théorème de
caractérisation séquentielle de la continuité, on en déduit que f est nulle sur R.

f = 0

9 ♡⋆ Soit f : R → R continue sur R. On suppose que f n’a pas de point fixe. Démontrer que f ◦ f n’a pas de point
fixe.

Corrigé : On considère l’application g définie sur R par g : x 7→ f(x) − x. Par hypothèse, la fonction g est continue
comme somme de deux fonctions continues sur R et elle ne s’annule pas car f n’a pas de point fixe. Une fonction continue
sur R qui ne s’annule pas garde un signe constant, ce qui donne deux cas.

• Si pour tout x ∈ R, g(x) > 0 alors pour tout x ∈ R, f(x) > x. En appliquant cela à f(x), on obtient :

f(f(x)) > f(x) > x

Ce qui démontre que f ◦ f n’a pas de point fixe dans ce cas.

• Si pour tout x ∈ R, g(x) < 0 alors pour tout x ∈ R, f(x) < x. En appliquant cela à f(x), on obtient :

f(f(x)) < f(x) < x

Ce qui démontre que f ◦ f n’a pas de point fixe.

3
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f ◦ f n’a pas de point fixe

10 ♡⋆⋆ Soit f : R → R continue et 1-périodique. Montrer que :

∀a ∈]0,+∞[, ∃c ∈ R, f(c+ a) = f(c)

Corrigé : Soit a ∈]0,+∞[ fixé. On est amené à poser :

g : R → R
x 7→ f(x+ a)− f(x)

Il s’agit de démontrer que g s’annule. La fonction f est continue sur le segment [0, 1] donc elle est bornée et atteint ses
bornes. Il existe (x1, x2) ∈ [0, 1]2 tels que :

f(x1) = max
x∈[0,1]

(f(x)) et f(x2) = min
x∈[0,1]

(f(x))

Il s’agit en fait d’un maximum et d’un minimum sur R car f est 1-périodique. Ainsi par définition de x1 et de x2, on a :

g(x1) = f(x1 + a)− f(x1) ≥ 0 et g(x2) = f(x2 + a)− f(x2) ≤ 0

La fonction g étant continue sur R, d’après le théorème des valeurs intermédiaires, on en déduit qu’elle s’annule :

∃c ∈ R, g(c) = 0 ⇔ ∃c ∈ R, f(c+ a) = f(c)

∀a ∈]0,+∞[, ∃c ∈ R, f(c+ a) = f(c)

11 ♡⋆ Trouver toutes les applications f : R → R continues en 0 telles f(0) = 0 et :

∀(x, y) ∈ R2, f
(x+ y

3

)
=

f(x) + f(y)

2

Corrigé : • Analyse. Soit f une fonction vérifiant la propriété de l’énoncé. Fixons x ∈ R, en prenant x = y, il vient :

f
(2
3
x
)
= f(x)

Par une récurrence immédiate, on obtient :

∀n ∈ N, f
((2

3

)n

x
)
= f(x)

Or lim
n→+∞

(2
3

)n

x = 0 donc par continuité de f en 0, on obtient lim
n→+∞

f
((2

3

)n

x
)
= f(0) = 0. Cependant cette limite

vaut aussi f(x). On en déduit que pour tout x ∈ R, f(x) = 0, c’est-à-dire que f est nulle.

• Synthèse. La fonctions nulle vérifie les conditions de l’énoncé.

Seule la fonction nulle convient

12 ⋆ Soient (a, b) ∈ R2 avec a < b, f et g deux fonctions continues sur [a, b]. On suppose que :

max(f(x))
x∈[a,b]

= max(g(x))
x∈[a,b]

Montrer qu’il existe c ∈ [a, b] tel que f(c) = g(c).

4
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Corrigé : Toute fonction continue sur un segment est bornée et atteint ses bornes ce qui justifie l’existence du
maximum de f et du maximum de g, notons ce maximum commun M ∈ R. Il existe (x1, x2) ∈ [a, b]2 tels que f(x1) = M et
g(x2) = M . On a :

(f − g)(x1) = f(x1)− g(x1) = M − g(x1) ≥ 0

(f − g)(x2) = f(x2)− g(x2) = f(x2)−M ≤ 0

De plus, la fonction f − g est continue sur [a, b], d’après le théorème des valeurs intermédiaires, on en déduit que f − g
s’annule : ∃c ∈ [a, b], f(c)− g(c) = 0.

∃c ∈ [a, b], f(c) = g(c)

13 ⋆⋆ Soient f et g deux fonctions continues sur [a, b] telles que :

∀x ∈ [a, b], f(x) < g(x)

Montrer qu’il existe une constante c > 0 telle que :

∀x ∈ [a, b], f(x) + c ≤ g(x)

Ce résultat reste-il vrai si on remplace [a, b] par ]0,+∞[ ?

Corrigé : • La fonction g − f est continue et strictement positive sur [a, b] donc elle est bornée et atteint ses bornes
en particulier elle atteint son minimum :

∃x0 ∈ [a, b], ∀x ∈ [a, b], (g − f)(x)− (g − f)(x0) ≥ 0

Notons c = g(x0)− f(x0) > 0. On a alors :

∀x ∈ [a, b], g(x)− f(x) ≥ c ⇔ ∀x ∈ [a, b], g(x) ≥ f(x) + c

Ce qui est la relation voulue.

• Le résultat est faux sur l’intervalle [0,+∞[. On peut donner un contre-exemple en prenant g : x 7→ 1

x+ 1
et f l’application nulle. On a bien :

∀x ∈ [0,+∞[, g(x) > f(x)

Par l’absurde, on suppose qu’il existe c > 0 tel que pour tout x ∈ [0,+∞[, f(x) + c ≤ g(x). En passant à la limite quand
x tend vers +∞, il vient c ≤ 0, ce qui est absurde.

14 ⋆ Déterminer les limites suivantes, si elles existent, et démontrer qu’elles n’existent pas le cas échéant.

1. lim
x→+∞

(x− ln(x+
√
x2 + 1))

2. lim
x→+∞

x
(
e

1
x − 1

)
3. lim

x→0
cos(x) cos

( 1

x

)
4. lim

x→1

x
1
n − 1

x
1
m − 1

où (m,n) ∈ (N∗)2

5. lim
x→1

√
x+ 3− 2√
2x+ 7− 3

Corrigé :

5
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1. On met le terme prépondérant en facteur, pour x > 0 :

x− ln(x+
√
x2 + 1) = x

1−
ln(x) + ln

(
1 +

√
1 + 1

x2

)
x


Cette quantité tend vers 0 d’après les résultats usuels de croissances comparées.

2. Pour x > 0, en reconnaissant un taux de variation, on a :

x
(
e

1
x − 1

)
=

e
1
x − 1
1
x − 0

−→
x→+∞

1

3. On considère deux suites qui tendent vers 0 :

xn =
1

2nπ
et yn =

1

2nπ + π
2

On a :

f(xn) = cos
( 1

2nπ

)
cos(2nπ) = cos

( 1

2nπ

)
−→

n→+∞
cos(0) = 1

f(yn) = cos
( 1

2nπ + π
2

)
cos

(
2nπ +

π

2

)
= 0 −→

n→+∞
0

Ce qui démontre que f n’a pas de limite en 0.

4. On transforme l’expression pour reconnaitre un taux de variation :

x
1
n − 1

x
1
m − 1

=
x

1
n − 1

x− 1
× x− 1

x
1
m − 1

−→
x→1

1

n
× 1

1
m

=
m

n

Ceci en reconnaissant le taux de variation en 1 de la fonction définie sur R∗
+ par x 7→ x

1
n qui a pour dérivée x 7→ 1

n
x

1
n−1.

5. On multiplie par les quantités conjuguées :

(
√
x+ 3− 2)(

√
x+ 3 + 2)(

√
2x+ 7 + 3)

(
√
2x+ 7− 3)

√
2x+ 7 + 3)(

√
x+ 3 + 2)

=
(x− 1)

√
2x+ 7 + 3

(2x− 2)
√
x+ 3 + 2

=

√
2x+ 7 + 3

2(
√
x+ 3 + 2)

−→
n→+∞

3

4

15 Étudier la continuité de la fonction f définie sur R par :

f(x) =

 xe
1
x si x < 0

0 si x = 0
x ln(x) si x > 0

Corrigé : La fonction f est clairement continue sur R∗
− et sur R∗

+, il reste à étudier la continuité en 0. Pour cela
étudions la continuité à gauche et à droite en 0 :

lim
x→0−

xe
1
x = 0 = f(0)

lim
x→0+

x ln(x) = 0 = f(0)

f est continue sur R

16 Étudier la continuité de la fonction f définie sur R par :

f : x 7→ x+ 2E(x) + 2
√
x− E(x)

6
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Corrigé : La fonction f est continue en tout point de R \ Z comme somme de fonctions l’étant. Soit k ∈ Z, étudions
la continuité en k. On a :

lim
x→k−

f(x) = k + 2(k − 1) + 2
√

k − (k − 1) = 3k = f(k)

lim
x→k+

f(x) = k + 2k + 2
√
k − k = 3k = f(k)

On en déduit que :

f est continue sur R

17 ♡⋆⋆⋆ Étudier la continuité de la fonction f définie sur R par :

f(x) =


cos(x) si x ∈ Q

1

2
si x ∈ R \Q

Corrigé : Soit A =
{π

3
+ 2kπ, −π

3
+ 2kπ, k ∈ Z

}
. On va démontrer que f est continue uniquement en tout point de

A.

• Soit x0 ∈ A. On a x0 ∈ R \ Q donc f(x0) =
1

2
. On va utiliser la caractérisation séquentielle de la continuité. Soit

(un) une suite de réels qui tend vers x0. Si un ∈ Q, f(un) = cos(un) et si un ∈ R \ Q alors f(un) =
1

2
. Ce qui nous donne

lim
n→+∞

f(un) =
1

2
= f(x0). On en déduit que f est continue en x0.

• Soit x0 ∈ (R \ Q) \ A, on a f(x0) =
1

2
̸= cos(x0). Par densité de Q dans R, il existe une suite de rationnels (un) qui

tend vers x0, on a alors :

f(un) = cos(un) −→
n→+∞

cos(x0) ̸=
1

2
= f(x0)

La fonction f n’est pas continue en x0.

• Soit x0 ∈ Q, on a f(x0) = cos(x0) ̸=
1

2
. Par densité de R \ Q dans R, il existe une suite (un) d’irrationnels qui tend

vers x0, on a alors :

f(un) =
1

2
−→

n→+∞

1

2
̸= f(x0)

Ainsi par caractérisation séquentielle de la continuité, on en déduit que f n’est pas continue en x0.

f est continue sur A

18 ♡⋆⋆ Soit f : R+ → R+ continue. On suppose qu’il existe l ∈ [0, 1[ tel que lim
x→+∞

f(x)

x
= l. Montrer que f possède

un point fixe.

Corrigé : On pose g : x 7→ f(x) − x définie sur R+. La fonction g est continue comme somme de deux fonctions
continues. On doit montrer que g s’annule, pour cela montrons qu’elle change de signe. On a :

g(0) = f(0)− 0 ≥ 0

D’autre part :
g(x)

x
=

f(x)

x
− 1 −→

x→+∞
l − 1 < 0 car l ∈ [0, 1[

Il en résulte qu’il existe A ∈ R∗
+ tel que pour tout x ≥ A, on a

g(x)

x
< 0 donc g(x) < 0.

7
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Finalement g est continue sur R+ et change de signe donc g s’annule et par suite f a un point fixe.

f a un point fixe

19 ⋆⋆⋆ Soit f : R → R une fonction continue telle que :

∀(x, y) ∈ R2, |f(x)− f(y)| ≥ |x− y|

1. Montrer que f est strictement monotone sur R.
2. Prouver que f est une bijection de R dans R.
3. Soit F = {x ∈ R, f(x) = x}. Montrer que F est un intervalle de R.
4. On suppose que f croit et qu’il existe (a, b) ∈ R2 tels que f([a, b]) ⊂ [a, b]. Montrer que [a, b] ⊂ F .

5. On suppose que F décroit, démontrer que F est réduit à un point.

Corrigé :

1. La fonction f étant continue, il suffit de démontrer qu’elle est injective afin de pouvoir conclure à la stricte monotonie.
Soient (x, y) ∈ R2, tels que f(x) = f(y). D’après l’hypothèse, cela donne 0 ≥ |x− y| donc x = y, d’où l’injectivité.

2. On suppose que f est strictement croissante :

• si x > 0, d’après l’hypothèse, on a : f(x)− f(0) ≥ x− 0 donc lim
x →+∞

f(x) = +∞.

• si x < 0, on a : f(0)− f(x) ≤ 0− x donc f(x) ≤ f(0) + x d’où lim
x→−∞

f(x) = −∞.

La fonction f est continue, strictement croissante sur R, lim
x→+∞

f(x) = +∞ et lim
x→−∞

f(x) = −∞. D’après le théorème

de la bijection f réalise une bijection de R dans R.

Si f est strictement décroissante, on applique le raisonnement précédent à −f qui est strictement croissante et qui
vérifie toujours l’hypothèse de l’énoncé.

3. Afin de démontrer que F est un intervalle, nous allons démontrer que F est une partie convexe de R, c’est-à-dire que
l’on considère (a, b) ∈ F 2 et x ∈ [a, b] et nous devons démontrer que x ∈ F . Par hypothèse, on a f(a) = a et f(b) = b.
D’après la question 1., la fonction f est soit croissante, soit décroissante.

• si f est croissante, on a :
f(x)− f(a) ≥ x− a =⇒ f(x)− x ≥ f(a)− a = 0

f(b)− f(x) ≥ b− x =⇒ f(x)− x ≤ f(b)− b = 0

On en déduit que f(x) = x.

• si f est décroissante, on a :

f(a)− f(x) ≥ x− a =⇒ f(x)− x ≥ f(a)− a = 0

f(x)− f(b) ≥ b− x =⇒ f(x)− x ≤ f(b)− b = 0

Là aussi, on a f(x) = x. On a démontré dans les deux cas que x ∈ [a, b], on en déduit que F est un intervalle.

4. Par continuité et par croissance de f , on a f([a, b]) = [f(a), f(b)] ⊂ [a, b] d’où 0 ≤ f(b)−f(a) ≤ b−a. D’autre part, par
hypothèse f(b)− f(a) ≥ b− a. On en déduit que f(a)− a = f(b)− b = 0 donc (a, b) ∈ F 2. Comme F est un intervalle,
on a [a, b] ⊂ F .

5. La fonction x 7→ f(x)− x est continue sur R, on a :

• si x < 0, f(x)− x ≥ f(0)− x −→
x→−∞

+∞

• si x > 0, f(x)− x ≤ f(0)− x −→
x→+∞

−∞

On en déduit que x 7→ f(x)−x change de signe et par continuité elle s’annule. Ainsi F est non vide. Il reste à démontrer
que F est réduit à un point. Soient (a, b) ∈ F 2 avec par exemple a < b, on a f(a) > f(b), c’est-à-dire a > b, ce qui est
absurde.

8
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20 ⋆ Déterminer toutes les valeurs de an et bn pour lesquelles la fonction f : R → R suivante est continue :

f(x) =

{
an + sin(πx) si x ∈ [2n, 2n+ 1], n ∈ Z
bn + cos(πx) si x ∈ ]2n− 1, 2n[, n ∈ Z

Corrigé : Déjà f est clairement continue en tout point de R \ Z. Pour que f soit continue sur R, il faut et il suffit
que :

lim
x→2n−

f(x) = lim
x→2n+

f(x) = f(2n) et lim
x→(2n−1)−

f(x) = lim
x→(2n−1)+

f(x) = f(2n− 1)

Ce qui se traduit par :
bn + 1 = an et an−1 = bn − 1

En sommant les deux inégalités, on obtient an−1+2 = an, la suite (an) est arithmétique et on a pour tout n ∈ N, an = 2n+a0
où a0 ∈ R. On en déduit que bn = 2n− 1 + a0.

21 ⋆⋆ Soient f et g deux fonctions définies et continues sur R telles que f ◦ g = g ◦ f . On suppose qu’il existe a ∈ R
tel que f(f(a)) = g(g(a)). Montrer qu’il existe b ∈ R tel que f(b) = g(b).

Corrigé : On raisonne par contraposition en supposant que l’équation f(x) = g(x) n’a pas de solution, c’est-à-dire
que h = f − g ne s’annule pas. Comme h est continue et ne s’annule pas, elle garde un signe constant, en particulier pour
tout x ∈ R, on a :

h(f(x)) + h(g(x)) ̸= 0

Or :
h(f(x)) + h(g(x)) = f(f(x))− g(f(x)) + f(g(x))− g(g(x)) = f(f(x))− g(g(x))

On en déduit que :
∀x ∈ R, f(f(x))− g(g(x)) ̸= 0

Ce qui démontre le résultat voulu par contraposition.

L’équation f(x) = g(x) a une solution

22 ⋆ Soit f définie de R dans R telle que :

∀x ∈ R, f(f(x)) = −x

Montrer que f n’est pas continue.

Corrigé : On raisonne par l’absurde en supposant que f est continue sur R. L’application f est injective car si l’on
suppose que f(a) = f(b) avec (a, b) ∈ R2 alors en composant par f , on a f(f(a)) = f(f(b)), c’est-à-dire −a = −b d’où a = b.
La fonction f est continue et injective, on en déduit qu’elle est strictement monotone sur R.

Quelque soit le sens de variation de f , on a f ◦ f qui est strictement croissante, c’est absurde car f ◦ f = −IdR.

f n’est pas continue sur R

23 ⋆⋆ Soient a, b et f trois fonctions continues sur R avec a < b. On suppose que pour tout x ∈ R, f(x) = a(x) ou
f(x) = b(x). Montrer que f = a ou f = b.

Corrigé : Il y a plusieurs méthodes mais le plus rapide est de poser :

h : x 7→ f(x)− a(x)

b(x)− a(x)
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La fonction h est bien définie sur R car a < b et elle est continue car a, b et f le sont. Par hypothèse h prend comme seules
valeurs 0 et 1. Ainsi car continuité, h est constante égale à 0 ou constante égale à 1. Ce qui donne bien f = a ou f = b.
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