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1. Soit f linéaire, il existe a € R tel que pour tout z € R, f(x) = ax. On vérifie la relation (W) :

V(z,y) €ER? f(z+y)=a(x+y) =az+ay = f(z)+ f(y)

Les fonctions linéaires vérifient la relation (%)

2. (a) Soit y € R fixé. La fonction g est dérivable sur R comme différence de deux fonctions dérivables sur R,

puisque par hypothese f est dérivable sur R.

La fonction f vérifie la relation (¥), ainsi pour tout = € R :

9(x) = flx +y) — f(z) = f(y)

La fonction g est constante sur R et dérivable sur R donc sa dérivée est nulle sur R.

Vz eR, ¢'(z) =0

(b) D’autre part, si on dérive g en utilisant 1’expression la définissant, on a :

Vo € R, g(x) = f'(e+y) - fx) =0

En particulier, pour = 0, nous obtenons f'(y) — f'(0) = 0, cette relation est bien valable quelque soit
y € R. On note a = f/(0) et on a :

JaeR, Yy eR, f(y)=a

(¢) On travaille sur I'intervalle R ainsi la relation de la question précédente nous donne 'existence de b € R tel

que f:x +— ax +b. Cependant avec la relation (W) utilisée en z = y = 0, on obtient directement f(0) =0
donc b = 0.

f est linéaire

3. (a) On applique la formule (%) avec x = 0 et y = 0, on obtient f(0) = 2f(0). Ce qui démontre que f(0) = 0.

f(0) =0

(b) Démontrons par récurrence sur l'entier naturel n que :

Hy : f(n)=an
e Initialisation. H est vraie puisque f(0) = 0.
e Hérédité. On suppose H,, vraie pour un entier naturel n fixé. On a :
fn+1) = f(n) + f(1) =an+a = a(n +1)

Ce qui termine la récurrence :

VneN, f(n)=an
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(c) Soit n € Z\ N, on a —n € N donc d’apres la question pécédente f(—n) = a(—n) et :
fn+(=n)) = f(n) + f(-n) & 0= f(n) + a(—n)

Ce qui démontre que f(n) = an. Finalement :

VneZ, f(n)=an

ontrons que cette égalité demeure pour les nombres rationnels. Soit r == oupe€eZ et g€ N*. On a:
d) Mont tte égalité d 1 b ti ls. Soit P o Z et N*. O
q

ap = f(p) = flgr) = fletr+ .. +r)=f0)+ () + ...+ f(r) = qf(r)

q fois q fois

En utilisant une récurrence immédiate ainsi que la relation (%) pour démontrer que
fo4+r+..+r)=fr)+ f(r)+...+ f(r).
—_———

q fois q fois

On a bien f(r) = ag = ar.

VreQ, f(r)=ar

(e) Les fonctions f et x +— ax sont continues sur R et I’étude précédente montre qu’elles coincident sur Q.
D’apres une propriété du cours, on en déduit que :

Ve €R, f(x) =ax

4. (a) 1. Soit z € R et n € N. On procede par encadrement :
10" e — 1 < (10" ] < 10"z

et
10"z — 1 < [10"z] < 10"z = —10""'z < —10[10"z] < 10 — 10"z

En sommant, il vient :

—1 < [10" 2] —10[10"z] < 10

Etant donné que [10"*12| — 10[10"z] est un entier, on en déduit que :

Vn € N, [10"Mz| —10[10"z] € [0,9]

ii. Soit n € N, en utilisant le résultat de la question précédente, on a :

1otz [10m2]  [10"Tz) — 10[10"%)
Untl = Un = "o i =~ “qon 10n+1 =0

Ce qui démontre que (u,) est croissante.

D’autre part, pour n € N et toujours en utilisant ’encadrement de la question précédente, on a :

(10" 2] +1  [10"z] +1  [10"T'z] —10[10"z] — 9 -
ot 1on 10n+1 =

Un4+1 — Un =

0

La suite (vy,) est décroissante.

(up) croit et (vy,) décroit
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iii. Pour n € N, on a :
[10"z] +1  [10™x] 1
_ = — —
10m 10" 10" n—+o0c

D’apres la question précédente, toutes les conditions sont réunies pour affirmer que :

Up — Un =

(up) et (v,) sont adjacentes

iv. On a : Lo Lo .
0] _ 107 +

10 — 10m

Vn € N, ungzﬁvnl

v. Les suites (uy) et (v,) étant adjacentes, elles convergent vers une limite commune, notons-la [ € R.
On passe a la limite dans la relation trouvée a la question précédente : [ < x < [. On en déduit que
=z et que (uy,) et (v,) convergent vers x.

[10"z| < 10"z < [10"z] + 1 =

(up) et (vy,) convergent vers x

Par croissance de la fonction f sur R, pour tout n € N, on a :

Or u,, et v, sont des nombres rationnels donc d’apres la question 3.(d), on a : f(u,) = au, et f(v,) = avy.

Vn e N, au, < f(z) < av,

On passe a la limite dans la relation précédente pour obtenir ax < f(z) < az. On vient de démontrer que
pour tout z € R, f(x) = ax.

f est linéaire

Réciproquement une fonction linéaire vérifie (%) comme nous 'avons démontré dans la question 1. et elle
est croissante si et seulement si a > 0.

Les fonctions croissantes qui vérifient (¥) sont de la forme = — ax avec a > 0

D’apres la relation de I'énoncé, on a f(1) = f(1 x 1) = f(1) x f(1) = f(1)%. On en déduit que f(1) =0 ou
f(1)=1.

F) = 0ou f(1) =1

Soit > 0, on a :




MPSI2 DM Mathématiques

(¢) Soient (z,y) € R? tels que z <y, on a y —z > 0 donc f(y — x) > 0. En utilisant la relation (¥), on a :

fly)=fle+@y—z)=fx)+ fly—z) > f(z)
>0

On a démontré que :
<y = f(z) < f(y)

f est croissante sur ]RI

(d) La fonction f est croissante sur R et vérifie (¥), d’aprés la question 4., on en déduit qu’il existe a € R tel
que pour tout x € R, f(x) = ax. Or d’apres la question 5.(a), on a f(1) =0 ou f(1) =1 donc a € {0, 1}.
On vérifie immédiatement que la fonction nulle et la fonction identité vérifient les hypothéses de la question

5.
szOuf:IdRI

6. (a) Soit z € [0,b—al, on a x +a € [a,b] et d’apres la relation (¥), on a :

[f(@)] = [f(x+a) = flo)] < |f(z +a)| +|fla)] < 2M

f est bornée sur [0,b — d]

(b) i. Soient (z,y) € R% on a :

gz +y)=flr+y) —clz+y) = (f(x) —cx) + (f(y) — cy) = g(x) + 9(y)

g vérifie la relation (¥)

ii. Soit x € R, on a :

9(z +d) = g(x) + g(d) = g(z) + (f(d) — cd) = g(x) + (f(d) - =

g est d-périodique I

iii. La fonction g est la somme de deux fonctions bornées sur [0,b — a] ainsi g est bornée sur [0,d]. Or g
est d-périodique et bornée sur I'une de ses périodes ainsi elle est bornée sur R.

g est bornée sur RI

iv. Soit zp € R tel que g(zg) # 0. Démontrons par récurrence sur n € N que :

My : g(nao) = ng(xo)

e Initialisation. Pour n = 0 la relation est évidente car ¢(0) = f(0) = 0 puisque f vérifie (¥).
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e Hérédité. On suppose H,, vraie pour n € N fixé. Etant donné que g vérifie la relation (¥),on a:

9((n+1)z0) = g(nxo + z0) = g(nwo) + g(z0) = ng(zo) + g(z0) = (n + 1)g(zo)
On en déduit que H,, est vraie, ce qui termine la récurrence.

On a |g(nzo)| = |ng(xo)| Nl +oo car g(zg) # 0. C’est clairement contradictoire avec le fait que g

g est la fonction nulle.

(¢) On en déduit que pour tout = € R, g(x) = f(x) — cx = 0.

f est linéaire

soit bornée sur R.

7. (a) Soit x € R*, six >0, 0n a:

w(m)=x+;=(f—\}§)2+2z2

Si z < 0, on a, par imparité de la fonction ¢, p(z) < —2. Finalement :

VY € R, |p(x)| > 2

(b) En utilisant les relations vérifiées par f, on a pour tout z € R* :

1 1 1
Fe@l = |f(z+ )| =[r@ +£(3)] = 1@ + 55| = lets @l 2 2
vz e R*, |f(p(x))] = 2
(¢) Une rapide étude des variations de la fonction ¢ permet de voir que p(R*) =] — 0o, —2] U [2, +00], ainsi si

y € R vérifie |y| > 2 alors il existe z € R* tel que y = p(z). D’apres la question précédente, on a :

IF W)l = 1f(p(x)] = 2

VyeR, |y >2=|f(y)| =2

1 1
(d) Soit z € R* tel que |z| < g ona ‘—‘ > 2 et d’apres la question précédente, on a :
x

N |

/()] = ‘fG)‘ <

11
De plus, d’apres la question 3.(a), on a f(0) = 0 donc f est bornée sur {— 3 5}

11
f est bornée sur 373
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(e) D’apres la question 6., étant donné que f est bornée sur un intervalle, on en déduit que f est linéaire,

c’est-a-dire qu’il existe a € R tel que pour tout x € R, f(x) = az. Enfin, si on utilise la relation de

I’hypothese, on a :
1 1 1
Vx € R*, f(—) a
T

1
En x =1, on obtient a = —, c¢’est-a-dire a = 1 ou a = —1.
a

Réciproquement, on vérifie que Idg et —Idgr conviennent.

Idr et — Idg sont les solutions.

8. Au vu des questions précédentes, le plus rapide est de raisonner de la fagon suivante. La fonction f est continue
en xg ainsi elle est bornée au voisinage de xg, d’apres la question 6., on en déduit que f est linéaire.

f est linéaire




