Chapitre 3 : Rappels sur les fonctions

- 1-Déterminer $\lim_{x \to +\infty} \sqrt{x^2 + x} x$.
- 2-Quel est l'ensemble de définition de $x \mapsto \frac{1 + e^{\sqrt{x}}}{x\sqrt{2 x}}$?
- 3-Déterminer $\lim_{x\to 0} \frac{x}{e^x 1}$.
- 4-Déterminer l'équation de l'asymptote oblique en $+\infty$ de

$$x \mapsto \frac{x^2 + 2x + 2}{x + 1}.$$

- 5-Démontrer que la fonction $g: x \mapsto x^2$ ne possède pas d'asymptote oblique en $-\infty$.
- 6-Soit $f:A\to\mathbb{R}$ avec A une partie de \mathbb{R} et $a\in A$. Que signifie :

$$\exists \varepsilon \in \mathbb{R}_+^*, \ \forall x \in A, \ |x - a| \le \varepsilon \Rightarrow f(x) \le f(a)$$

7-Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$, on suppose que : $\forall x \in \mathbb{R}_+$, $|f(x)| \le x$. La fonction f est-elle majorée ? minorée ? bornée ?

1-Déterminer
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x$$
.

Réponse : Mettre en facteur x ne suffit pas à lever l'indétermination. On va multiplier par la quantité conjuguée.

Pour x > 0, on a : $\sqrt{x^2 + x - x} =$

$$\frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{\sqrt{x^2 + x} + x} = \frac{x}{\sqrt{x^2 + x} + x} = \frac{x}{x\left(\sqrt{1 + \frac{1}{x}} + 1\right)} = \frac{1}{\sqrt{1 + \frac{1}{x}} + 1}$$

Sous cette forme là, il est clair que :

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \frac{1}{2}$$

2-Quel est l'ensemble de définition de
$$x \mapsto \frac{1 + e^{\sqrt{x}}}{x\sqrt{2 - x}}$$
?

Réponse : • Le numérateur est défini pour $x \ge 0$ puisque la fonction racine carrée est définie sur \mathbb{R}_+ .

- Le dénominateur est défini si et seulement si :
- $2-x \ge 0 \Leftrightarrow x \le 2$.
- \bullet Enfin, le dénominateur ne doit pas s'annuler, c'est-à-dire $x \neq 0$ et $x \neq 2.$

$$D_f =]0, 2[$$

3-Déterminer
$$\lim_{x\to 0} \frac{x}{e^x - 1}$$
.

Réponse : Pour $x \neq 0$, on a :

$$\frac{e^{x}-1}{x}=\frac{e^{x}-e^{0}}{x-0}\underset{x\to 0}{\longrightarrow} 1$$

Ceci en reconnaissant le taux de variation de la fonction exponentielle en 0 qui tend donc vers la dérivée d'exponentielle en 0 qui vaut 1.

On en déduit que :

$$\lim_{x \to 0} \frac{x}{e^x - 1} = 1$$

4-Déterminer l'équation de l'asymptote oblique en $+\infty$ de

$$f: x \mapsto \frac{x^2 + 2x + 2}{x + 1}.$$

Réponse : On peut appliquer la méthode vue en cours ou proposer la réécriture suivante :

$$\forall x > -1, \ \frac{x^2 + 2x + 2}{x + 1} = \frac{(x + 1)^2 + 1}{x + 1} = x + 1 + \frac{1}{x + 1}$$

Ce qui permet d'affirmer que :

$$\lim_{x \to +\infty} f(x) - (x+1) = \lim_{x \to +\infty} \frac{1}{x+1} = 0$$

Ainsi la droite d'équation y = x + 1 est asymptote oblique à C_f en $+\infty$.

5-Démontrer que la fonction $g: x \mapsto x^2$ ne possède pas d'asymptote oblique en $-\infty$.

Réponse : Par l'absurde si la droite d'équation y = ax + b avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ est asymptote oblique à C_g en $-\infty$ alors :

$$\lim_{x \to -\infty} x^2 - (ax + b) = 0$$

Ce qui est contradictoire puisque cette limite vaut $+\infty$.

6-Soit $f: A \to \mathbb{R}$ avec A une partie de \mathbb{R} et $a \in A$. Que signifie :

$$\exists \varepsilon \in \mathbb{R}_+^*, \ \forall x \in A, \ |x - a| \le \varepsilon \Rightarrow f(x) \le f(a)$$

Réponse : La condition $|x-a| \le \varepsilon$ est équivalente à $x \in [a-\varepsilon, a+\varepsilon]$. Cet énoncé signifie qu'il existe un intervalle centré en a tel que pour tout x dans cet intervalle : $f(x) \le f(a)$. Cela revient à dire que f admet un maximum local en a.

7-Soit $f: \mathbb{R} \to \mathbb{R}_+$, on suppose que : $\forall x \in \mathbb{R}, |f(x)| \leq x$. La fonction f est-elle majorée ? minorée ? bornée ?

Réponse : • Déjà, la fonction étant à valeurs dans \mathbb{R}_+ , elle est minorée par 0.

- ullet Par contre, la condition de l'énoncé ne suffit pas à affirmer qu'elle est majorée puisqu'ici x n'est pas une constante fixée. Par exemple, la fonction $x\mapsto x$ définie sur \mathbb{R}_+ n'est pas majorée mais vérifie la condition de l'énoncé.
 - On en déduit que f n'est pas bornée.