Problème: Polynômes de Tchebychev

Pafnouti Tchebychev est un mathématicien russe du 19ième siècle. Ses travaux en théorie des nombres sont majeurs et il démontre notamment qu'entre n et 2n avec $n \in \mathbb{N}^*$, il y a toujours un nombre premier. C'est un très mauvais pédagogue qui déteste enseigner, maladivement ponctuel il arrêtait ses cours à la seconde près, parfois au milieu d'une phrase. Il est mort en buvant une tasse de thé. Son prénom a inspiré le célèbre groupe de musique "Les Pafnouties".

Nous allons ici étudier la famille (T_n) des polynômes de Tchebychev. Pour tout $n \in \mathbb{N}$, on définit la fonction :

$$T_n: x \mapsto \cos(n\operatorname{Arccos}(x))$$

1. Préliminaires.

- (a) Donner l'ensemble de définition de T_n .
- (b) Donner, en fonction de n, la parité de la fonction T_n .
- (c) Démontrer que : $\forall \theta \in \mathbb{R}, \ T_n(\cos(\theta)) = \cos(n\theta)$. On pourra commencer par le démontrer pour $\theta \in [-\pi, \pi]$.
- (d) En déduire une expression de T_i sous forme d'une fonction polynomiale pour $i \in [0,3]$.

2. Une définition récursive.

- (a) Soit $n \in \mathbb{N}$, démontrer que : $\forall x \in [-1,1], T_{n+2}(x) = 2xT_{n+1}(x) T_n(x)$.
- (b) Expliciter T_4 .
- (c) Démontrer, par récurrence sur $n \in \mathbb{N}^*$, que T_n est une fonction polynomiale de degré n et de coefficient dominant 2^{n-1} .

3. Dérivée.

- (a) Démontrer que pour tout $n \in \mathbb{N}$, T_n est dérivable sur]-1,1[et donner l'expression de T'_n .
- (b) Déterminer $\lim_{\theta \to 0} \frac{\cos(n\theta) 1}{\cos(\theta) 1}$. En déduire que T_n est dérivable en 1 et en -1 et donner les valeurs de $T'_n(1)$ et de $T'_n(-1)$.

4. Racines de T_n . Soit $n \in \mathbb{N}^*$.

- (a) Démontrer que les solutions de l'équation $T_n(x) = 0$ sur [-1,1] sont exactement les $x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ où $k \in \mathbb{Z}$.
- (b) Donner le nombre exact de solutions à l'équation précédente.
- (c) Montrer que les racines de T'_n sont les $y_k = \cos\left(\frac{k\pi}{n}\right)$ où $k \in [1, n-1]$.
- (d) Etudier les extremums de T_n sur [-1,1].

5. Une autre écriture. Démontrer que :

$$\forall n \in \mathbb{N}, \ \forall x \in [-1, 1], \ T_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (x^2 - 1)^k x^{n-2k}$$

où $\left|\frac{n}{2}\right|$ désigne la partie entière de $\frac{n}{2}$.

6. Utilisation de Python.

- (a) Écrire une fonction qui prend en paramètre un entier naturel n et trace la courbe représentative de T_n .
- (b) Écrire une fonction qui prend en paramètre un entier naturel n et renvoie la liste des coefficients du polynôme T_n .