Équations différentielles linéaires

En l'absence de précisions, y désigne une fonction de la variable x et l'on demande de trouver les solutions à valeurs dans \mathbb{R} des équations différentielles proposées.

Ordre 1

 $\boxed{1}$ Résoudre l'équation différentielle suivante :

$$\sqrt{1-x^2}y' + y = 1 \text{ sur }]-1,1[$$

2 $\heartsuit \bigstar$ Résoudre les équations différentielles suivantes sur les intervalles précisés :

- a) $(2 + \cos(x))y' + \sin(x) y = (2 + \cos(x))\sin(x) \sin(x)$ sur \mathbb{R}
- b) $(1 + \cos^2(x))y' \sin(2x)y = \cos(x) \text{ sur } \mathbb{R}$
- c) $\sin(x) y' \cos(x) y + 1 = 0 \text{ sur }]0, \pi[$
- d) $\sin(x)^3 y' = 2\cos(x) y \text{ sur } [0, \pi[$

3 ★ Résoudre les équations différentielles suivantes sur les intervalles précisés :

- a) $ch(x) y' sh(x) y = sh^{3}(x) sur \mathbb{R}$
- b) $y' \frac{\operatorname{sh}(x)}{1 + \operatorname{ch}(x)} y = \operatorname{sh}(x)$ sur \mathbb{R}
- c) $\operatorname{sh}(x) y' \operatorname{ch}(x) y = 1 \operatorname{sur} \mathbb{R}_+^* \operatorname{et} \mathbb{R}_-^*$

4 \star Résoudre sur $\mathbb R$ les équations différentielles :

- a) $y' + 2y = x^2$
- b) $y' + y = 2\sin(x)$
- c) $y' y = (x+1)e^x$
- d) $y' + y = x e^x + \cos(x)$

 $\boxed{5} \bigstar$ Résoudre sur $\mathbb R$ les équations différentielles :

- a) $(x^2 + 1)y' + 2xy + 1 = 0$
- b) $(x^2 + 1)y' xy = (x^2 + 1)^{3/2}$

6 ★ Résoudre les équations différentielles suivantes sur les intervalles précisés :

- a) $(1 + e^x)y' + e^xy = 1 + e^x \text{ sur } \mathbb{R}$
- b) $(e^x 1)y' + e^x y = 1 \text{ sur } \mathbb{R}_+^* \text{ et } \mathbb{R}_-^*$
- c) $x(1 + \ln^2 x)y' + 2\ln(x)y = 1 \text{ sur } \mathbb{R}_+^*$

$$\forall x \in [0,1], \ f'(x) + f(x) = f(0) + f(1)$$

Ordre 2

8 \heartsuit Résoudre sur $\mathbb R$ les équations différentielles :

- a) y'' + 2y' + 2y = 2x
- b) $y'' + y = x^2 + 1$
- c) $y'' 3y' + 2y = 2x^2$

9 \bigstar Résoudre sur $\mathbb R$ les équations différentielles :

- a) $y'' + 2y' + y = xe^x$
- b) $y'' + y' 2y = xe^x$
- c) $y'' + 2y' + 2y = (x+1)e^{-x}$

 $\boxed{10}$ $\heartsuit\bigstar$ Résoudre sur $\mathbb R$ les équations différentielles :

- a) $y'' + y = \operatorname{sh}(x)$
- b) $y'' 3y' + 2y = x\operatorname{ch}(x)$
- c) $y'' 2y' + y = 2\operatorname{ch}(x)$

11 \bigstar Résoudre sur $\mathbb R$ les équations différentielles :

- a) $y'' + 2y' + 2y = \sin(x)$
- b) $y'' + y = x \sin(x)$
- c) $y'' + y = 2\cos^2(x)$

 $\ \ \, \ \ \, \ \ \, \ \ \,$ Déterminer les fonctions dérivables sur $\mathbb R$ telles que :

$$\forall x \in \mathbb{R}, \ f'(x) = f(\pi - x)$$

13 \heartsuit_{\bigstar} Déterminer les fonctions dérivables sur \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, \ f'(x) + f(-x) = e^x$$

14 $\bigstar \star \star$ Le but de l'exercice est de trouver toutes les fonctions dérivables deux fois sur \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, \ f''(x) + f(-x) = x^2 + \sin(x)$$

- a) Déterminer les solutions paires de $y'' + y = x^2$.
- b) Déterminer les solutions impaires de $y'' y = \sin(x)$.
- c) En déduire les solutions du problème initial.

(Divers)

15 \bigstar Résoudre le système différentiel :

$$\begin{cases} x'' = x' + y' - y \\ y'' = x' + y' - x \end{cases}$$

où x et y sont des fonctions de la variable t.

16 \star Résoudre sur $\mathbb R$ l'équation différentielle :

$$(1 + e^x)y'' + 2e^xy' + (2e^x + 1)y = xe^x$$

On pourra poser $z(x) = (1 + e^x)y(x)$.

17 \bigstar Résoudre sur \mathbb{R}_{+}^{*} l'équation différentielle :

$$x^2y'' + xy' + y = 0$$

On pourra poser $x = e^t$.

1

2025-2026

 $\boxed{18} \heartsuit_{\bigstar}$ Résoudre sur $\mathbb R$ l'équation différentielle :

$$(1+x^2)^2y'' + 2(x-1)(1+x^2)y' + y = 0$$

On pourra poser $t = \arctan(x)$.

19 \bigstar On considère l'équation différentielle

$$(E): xy' + (x+1)y = x+1$$

- a) Résoudre (E) sur \mathbb{R}_+^* et \mathbb{R}_-^* .
- b) L'équation (E) a-t-elle une solution sur \mathbb{R} ?

20 \bigstar Trouver toutes les solutions dérivables sur $\mathbb R$ de l'équation différentielle :

$$(E): x^3y' - 2y = 0$$

 \square 1 \bigstar \bigstar Montrer que l'équation différentielle :

$$y' + 2xy = 1$$

admet une unique solution impaire.

D2 $\bigstar \star \star$ Déterminer les fonctions f dérivables sur \mathbb{R}_+^* telles que :

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = f\left(\frac{1}{x}\right)$$

$$(E) : y'' + 2y' + y = \frac{e^{-x}}{x}$$

2025-2026

2