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A-Généralités

1. Il y a deux cas a considérer :

2.

e si ¢ = 0 alors d # 0 grace a la condition de 1’énoncé (¢, d) # (0,0) ainsi f : z —

az+b
+ est clairement définie

sur C.

d
e si ¢ # 0 alors f est définie sur C\ { — f} afin que le dénominateur ne s’annule pas.
c

(a)

Iensemble de définition de f est Csic=0et C\ { — g} sic#0
c

D’apres ’hypothese de cette question, on a ad = bc ainsi en supposant de plus que a = 0, on a bc = 0 ce
qui donne deux cas :

e soit b = 0 et dans ce cas f est I'application nulle.

b
e soit ¢ = 0 et dans ce cas f est ’application constante égale a p sachant que d est bien non nul car ¢ = 0.

si a =0 alors f est constante'

Si ¢ = 0 alors ad = be = 0, ce qui fait deux cas a considérer :

e soit d = 0 mais ce cas est & exclure car ¢ et d ne peuvent s’annuler simultanément.

b
e soit a = 0 et dans ce cas f est a nouveau I'application constante égale a 7

si ¢ =0 alors f est constante.

b d
Supposons a présent a # 0 et ¢ # 0, ’hypotheése ad — bc = 0 se réécrit dans ce cas — = —. Ainsi pour z
a c

dans ’ensemble de définition de f, nous avons :

a z—i-g
- - 5 -

Ce qui montre, dans ce cas également, que f est constante.

si ad — bc = 0 alors f est constante I

a b
Si ¢ = 0, nous savons que d # 0 et que f : 2z +— —z + p est définie sur C. Pour montrer que c’est une

d
bijection de C dans C, on se donne (z,w) € C? et on résout ’équation :

C

En résumé :

w—g d b
Sr=—w——
a a

f(z):w<:>%z+g:w<:>z:

Qe

Ce calcul étant valable car si jamais a = 0 alors sachant que ¢ = 0, on aurait ad — bc = 0 ce que nous avons
exclu.

d b
si ¢ =0 alors f est une bijection de C dans C et f~1: w > —w — —
a a
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d
(b) On suppose que ¢ # 0 et on tente également de résoudre 1’équation pour z € C\ { — f} et weC:
c

f(z):w@)azis:w@az—kb:(cz—kd)w@z(a—cw):dw—b
cz

A ce moment du calcul, deux cas se présentent :

: a , : : da < : - a
e si w = — alors ’équation devient 0 = — — b, c’est-a-dire 0 = da — bc, ce qui est exclu, ainsi wyp = — n’a
c c c
pas d’antécédent par f.
a . . , dw—0>
e en revanche pour w # —, il est possible de terminer le calcul précédent et nous obtenons z = .
c a— cw

d
Ceci montre que f est une bijection de C\ { — f} vers C\ {ﬂ} et :
c c

4. Afin de trouver un point fixe, nous devons étudier I’équation f(z) = z. Distinguons deux cas :
e si ¢ = (, 'équation devient :
fz)=zeaz+b=dze (a—d)z+b=0

Si a = d alors ’équation devient b =0 :
» sib=0, comme ¢ =0 et a =d alors f = id¢ ce qui est exclu dans la question.

» sib#0, alors f(z) = z n’a aucune solution et il n’y a pas de point fixe.

esic#0,ona:
fe)=zeaz+b=z2(cz+d) &z —az+dz—b=0

C’est une équation de degré exactement 2 qui possede, d’apres le cours, 1 ou 2 solutions, que 1’on ne demande
pas de trouver.

Nous avons traité les différents cas et en résumé :

une homographie différente de 'identité possede 0,1 ou 2 points fixes I

A titre d’exemple :

e f:2+— z+ 1 qui correspond au cas ot a =b=d =1 et ¢ =0 n’a clairement pas de point fixe.

e f:2z+— 2z qui correspond au casou a=2,b=0,c=0et d=1 a pour unique point fixe 0.
o f: 2z — qui correspond au casoua =0,b=0,c=1¢et d =0 a deux points fixes 1 et —1. En effet, la
z

1
résolution de I’équation f(z) = z, c’est-a~-dire — = z est immédiate.
z
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B-Cas ouc=0etd=1 : les similitudes directes

1. (a) Dans cette partie ¢ = 0 ainsi nous avons forcément a # 0 car si a = 0 alors ad — bc = 0 ce qui est exclu

d’apres la partie A.
frz—az+b aveca;éOI

(b) Sia =1, lapplication f : z — z+b est la représentation complexe de la translation de vecteur @ d’affixe b.
Dans le cas ou a # 1, nous savons d’apres le cours que f est la composée de la rotation de centre 2 d’affixe

w = et d’angle un argument de a et de ’homothétie de centre €2 et de rapport |al.

1—a

T
2. (a) D’apres le cours, la rotation de centre A d’affixe a = —1 + 3i et d’angle 5 a pour écriture complexe :

r(z) =% (z—a)+a=e5(z+1—-3i) —1+3

r(z) =e'5(z4+1—3i) — 14 3i

(b) D’apres le cours, ’homothétie de centre B d’affixe b = 1 4 2i et de rapport —2 a pour écriture complexe :

h(z) ==2(z—=b)+b=—-2(z—1—-2i) +1+2i

h(z) =—2(z—1—2i)+1+2i

(c) Voici les éléments caractéristiques de cette similitude directe :

e le rapport vaut | — 2 4 2i| = 2v/2.
3 3
e une mesure de ’angle de cette similitude est un argument de —2 + 2i = 2\/56137, c’est-a-dire Zﬂ
e le centre de la similitude s’obtient par résolution de I’équation :
w=(-24+2)w+5+i & w(l+2-2i)=5+1

S+
3— 2t

w =

(54 14)(3 + 2i)
13

& w=1+1

3
s est la similitude directe de centre Q(1 + ¢), d’angle Zﬂ, de rapport 2v/2

3. Soit s : z +— az + b une similitude avec (a,b) € C? et a # 1. On suppose que 2 et 2 sont deux points fixes de s
distincts. C’est-a-dire que :

z1 = az1+b
z9 = az+b
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En retranchant les deux lignes, on a : 21 — 23 = a(z1 — 2z2). Comme 21 # 29, on peut simplifier par z; — z2 pour
obtenir @ = 1. Enfin, en reportant ceci dans I'une des égalités précédentes, on a : b = 0.

La seule similitude possédant deux points fixes est f: z +> 2 I

4. D’apres la question 3. de la partie A, nous savons que s est bijective ainsi z/, zps et z¢r sont distincts car z4,
) : L AT Al A . N RO — RA

zp et z¢ le sont. Une mesure de 1’angle orienté (A'B’, A'C") est égal a4 un argument de ————— nous avons :
ZBr — Z A

zor —zar azo +b—(aza+0b)  alzc—za)  zo—za

2pr — 24 azp+b—(aza+0b)  alzp—za) 2B — 24

z z 1B
Or un argument de 20 P4 st égal & une mesure de 'angle orienté (A , A( ?)
ZB — ZA

Les similitudes directes préservent les angles orientés.

C-Etude de linversion

1. (a) Montrons que f(C*) = C* par double inclusion.

1
e Soit z € C*, on a clairement f(z) = S € C*. D’ou f(C*) c C*.

e Réciproquement, si w € C*, on a f(w™') = w avec w™! € C*, ainsi C* C f(C*).
f(€c)=C*

(b) Montrons que f(U,) = U, par double inclusion.

1
e Soit n € N* et z € U,. On a — qui est également un élément de U, car :
z

-
Ainsi f(U,,) C U,.

e Réciproquement, si w € U,,, on a :
1
i)~
w

et — € U,, avec le méme calcul que ci-dessus. On en déduit que U,, C f(U,).
w

(c) On a directement :

F{l+2i,4}) = {1+1211} - {1_52i’_i}

FUL+2i,0)) = {1 _52i, i)
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d) Allons un peu plus vite car il est évident que pour z € C*, on a :
(d) peu p que p ,

1
* *
ze]R{+<:>;eR+

J(E) =R}

2. 11 est ici intéressant de remarquer que f est une bijection de C* dans C* et f~! = f.
(a) Avec cette remarque, nous avons :

—1+4+ 4 1}

S -y = f{ - i) = {

—1+4+ 4 1}

fﬁl({_1_4i74}):{ 17 4

(b) On peut répondre a cette question en rédigeant ainsi :

mo={zec, %ew}:{zec*, ‘%’:1}:{,26@*, 2 =1} = U

(¢c) On a:

f‘l(iR):{zeC*, %em}:{zec*, I € R*, %:ib}:{ze(c*, I € R, z:z%}:i]R*

f7L(GR) = iR*

(d) Soient (a,b) € R?* avec (a,b) # (0,0) et z = a +ib, on a :

1 1 a b

f(z):;: atib  aZ+b? _Za2+b2

Ainsi :
Re(f)(z) >0< a >0« Re(f) >0
On en déduit que :

Re(f) ' (R%) = {z € C, Re(z) > 0}

3. Il est clair que pour z € C* et w € C*, on a :

1 1
fG =we —=wez=—
z w

On en déduit que f est une bijection de C* dans C* et que :

fl=
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4. (a) L’application f réalise une bijection de R* dans R*, on en déduit que :

f(R*) =R*

De méme, en reprenant la démarche de la question 2.(c), on obtient :

F(IR*) = iR*

(b) Considérons une droite dirigée par le vecteur unitaire U d’affixe z,. Le point M d’affixe z appartient a

cette droite privée de l'origine si et seulement s’il existe o € R* tel que OM = aW. Cette égalité se traduit

. . 1 11 1_ . .
par z = az, ce qui est équivalent & — = —— = —Z, ceci étant donné que — = Z, puisque |z,| = 1. Nous
z 0z, o

z
avons démontré que I'image de la droite passant par I'origine et dirigée par ﬁ(zu) est la droite passant par
I'origine et dirigée par le vecteur o (Zy).

L’image d’une droite passant par l’origine est un droite passant par l’originel

s
(¢) i. Le point M d’affixe z appartient a la droite (AB) si et seulement si AM et AB sont colinéaires, c’est-

-1 141
z € R, c’est-a~dire ((a +ib) — 1) x Rl

a~dire si et seulement si € R. La partie imaginaire de ce

—1

1
nombre complexe vaut 3 (b +a—1) =0, ce qui équivaut bien & b =1 — a.

M(z = a +ib) appartient a (AB) si et seulement sib=1—a

ii. Pour calculer la distance proposée par ’énoncé, examinons pour z = a + ib tel que M (z) € (AB) :

‘ 1 _1—1’}2 _ ‘2—(a+z’b)(1—z‘)’2
at+ib 2 2(a + ib)

B ‘1+7j(—1+2a))2
N 2(a +1ib)

1+ (2a —1)2
4(a® + b?)
2 — 4a + 4a?

- La2+ (1-a)? en utilisant la relation b =1 —a
a —a

B 2 — 4a + 4a?
 8a2—8a+4
1
)

On en déduit que :

1
M'(f(z)) est & distance — du point C

V2
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ii. On en déduit que I'image par f de la droite (AB) est incluse dans le cercle de centre C' et de rayon

1

V2
Réciproquement, nous devons déterminer quels sont les points de ce cercle qui possedent un antécédent
appartenant a la droite (AB).

1—14 ‘ 1
= —. Prenons M’(w) un point
du cercle qui n’est pas 'origine du repere (en effet il est évident que 0 n’a pas d’antécédent par f).
1—142
2

Remarquons déja que ce cercle passe par 'origine du repere car ‘

1
=5 On multiplie par 2 et on développe le module au carré pour obtenir :

On a: ’w —
2wo—(1+iw—-(1—dw+1=1
On divise par ww qui est non nul car w # 0 pour obtenir :

2 — =0

142 1—1
w w

1
Posons z = a + ib € C tel que z = —, nous obtenons :
w
2—(14+dz—(1—-14)z=0

En utilisant la forme algébrique de z, en développant et en simplifiant, il vient b = 1 — a, ce qui est
bien I’équation de la droite (AB). Ainsi, on a trouvé un antécédent de w par f qui appartient a (AB).

On conclut :

1
La droite (AB) a pour image par f le cercle de centre C' et de rayon —

V2

5. (a) Les affixes des points du cercle de centre O et de rayon r € R’ sont les nombres complexes de la forme

(b)

z=re? ol @ € R. Or:

() = 2 = — = e

z re? r

Quand 0 décrit R, on a —0 qui décrit également R. On reconnait a nouveau la description d’un cercle.

1
L’image du cercle de centre O et de rayon r est le cercle de centre O et de rayon —
r I

i. Le cercle Cp est de rayon r. Les points du cercle sont exactement les points M d’affixe z tels que

DM = r, ce qui se traduit avec le module par |z — zp| = r, en élevant au carré cela donne :

L’équation du cercle de centre C est |z — zp|? = 2 I

ii. On développe le module précédent :

\z—zD]2:r2(:>(z—zD)(z—zD):rz(:)z?—z[)f—z@+\z[)\2—r2:0

L’équation du cercle est 2Z — zpZ — 2Zp + |2p|* — 12 =0
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iii. Dans ce cas particulier, ’équation précédente devient :
2Z—zpz—2zZp =0
1 , . " . .. _ . .
On pose Z = — afin d’appliquer I'inversion et en divisant par zZ qui est non nul, on obtient :
z

1-— ZDZ — ZDZ =0
Ce qui équivaut & 1 = 2Re(zpZ). On pose zp = dy +idy et Z = x+iy avec (d1,dy, z,y) € RY, il vient :
2dix — 2doy =1

Ce qui est bien I’équation d’une droite ne passant pas par 'origine et toute droite ne passant pas par
Iorigine possede bien une équation de cette forme.

L’inclusion réciproque est vérifiée car f est une bijection de C* dans C* :

I'image d’un cercle passant par 1'origine est une droite ne passant pas par l’origine.

2

iv. Pour simplifier, on note k = \ZD\Q — r“ ainsi dans cette question, I’équation du cercle Cp est :

2Z—z2pz—2Zp+ k=0

1
On divise également par 2z, z étant bien non nul et on pose Z = — afin d’appliquer I'inversion.
z

On obtient :
1—ZDZ—ZDZ+I€ZZZO

En réorganisant ceci, nous obtenons :
Zp |2
‘Z TN
k

ZD
N / . . , .
ol k' est une nouvelle constante. Ceci est bien 1’équation d’un cercle de centre d’affixe —.

k
I'image d’un cercle ne passant pas par 'origine est un cercle'

D-Ezxemples d’homographies

1. (a) Il s’agit de vérifier la condition de I’énoncé : ad — be # 0. Pour h,onaa =14,b=14,c=—1et d =1 donc

ad — bc =1 — (—i) = 2i # 0.
h est une homographie définie sur C\ {1} I

(b) Soit z € U \ {1}, nous allons démontrer que h(z) = h(z), ce qui démontrera bien que h(z) € R d’apres la
caractérisation d’un réel a ’aide du conjugué. La principale propriété que 'on va utiliser dans le calcul a

1
venir est que pour tout z € U \ {1}, = = Z puisque 2Z = |2|* = 1. Pour tout z € U \ {1} :
2

1+z 14+ 41 241
—1 — = —1 1:—1, =1 =
1—=2 1—-2 1-2 z—1 1—=2

h(z) = h(z)

(.1-1-2) 142
1 =1
1—=z2

on a multiplié par Z

Vze U\ {1}, h(z) €R
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2.

()

(a)

(b)

Donnons-nous pour cette question z € D, il s’agit de démontrer que h(z) € P, c’est-a-dire que Zm(h(z)) > 0.
Pour cela, une méthode consiste a utiliser la forme algébrique de z, posons z = x+iy ou (z,y) € R?. Remar-
quons également que z # 1 puisque |z| < 1, ainsi le calcul de h(z) a un sens. En multipliant le dénominateur
par la quantité conjuguée, on a :

A4az+iy (I+z+iy)(l—x+iy) 1—22—y%+2iy 1 . 2 9
hz) = = = = (~2y+i(1-2%—%)
S R T RS v e LG A R

Or par hypothese z € D, donc |z| < 1, ce qui implique que |z|> = 2° +3? < 1 ou encore 0 < 1 — z? — 2.
Ceci permet de conclure puisque :
1—a22— y2

Im(h(z)) = (e >0

Vze D, h(z) e P

Soit z un nombre complexe différent de 1 :

d1+=z

h =
(z2) ==z T,

2

” & i41z =z — 27, cette équivalence est correcte car 1 n’est pas solution

7 e 24 (i-1)z+i=0

On reconnait une équation du second degré a coefficients complexes. Le discriminant de I’équation est
A=(i— 1)2 — 44 = —61, on applique la méthode vue en cours pour trouver les racines. On recherche un
nombre complexe § tel que 62 = A avec § = = + iy ou (z,y) € R?, on obtient de facon usuelle le systéme :

22—y =0
2xy = —6
> +y? = 6

Les équations 1 et 3 permettent de trouver 22 = 3 et 42 = 3 et 'équation 2 permet de dire que z et y sont
de signes opposés. Ainsi, on peut choisir § = V3 —iV/3 et les deux solutions de I’équation du second de
degré sont

_1+VB—i(1+V3) ot 25 — 1—V3+i(—1+V3)
2 2

1+V3—i(l+V3) 1-V3+i(-1++3)
2 2

21

Les solutions de I’équation h(z) = z sont

Dans le cas de g, les coefficients sont a = 1, b= —i, c=1 et d = i, ainsi ad — bc =i — (—i) = 2i # 0.

g est une homographie définie sur C \ {—i} I

Soit z € R, démontrons que |g(z)|*> = g(2)g(z) = 1 ainsi on aura bien g(z) € U.

z—1 Z4+1
= X
9(2)g(2) PR

z—1 zZ+1 , _
= - X - car z est réel donc z =%
zZ+1 zZ—1

=1
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()

VzeR, g(z) eU

Soit z € P, c’est-a-dire que Zm(z) > 0, on doit démontrer que |g(z)| < 1. Pour cela, on effectue le calcul
suivant :

_ z—1 zZ4+1
- X =
Z4+1 zZ—1

2Z+1+1i(z — %)
2Z+14+1i(Z - 2)

_ Al i(2im(2)) car z — z = 2iZm(z)
2Z+ 1 —1i(2iZm(z))

2Z+1—2Im(z)
2Z+ 1+ 2Im(z)

<1

Ce quotient est inférieur & 1 puisque 2z + 1 — 2Zm(z) < 2Z + 1 + 2Zm(z) car Zm(z) > 0. Finalement, on
a démontré que g(2)g(z) = |g(2)]* < 1 donc |g(2)| < 1.

Vz€e P, g(z) € D

—tz — 2
La fonction f peut se réécrire f : z — —. Ses coefficients sont a = —i, b= -2, c =1 et d = 4i, on

z+ 41
a:—ix4i—(=2)x1=6%#0.

f est une homographie définie sur C \ {—4i} I

Soit z € C\ {—4i}. Remarquons que f(z) = 0 si et seulement si z = 2i. Ainsi pour z = 2i, f(z) est réel.
Excluons ce cas par la suite puisque 1'on va se servir d’un argument de f(z) :

f(z) eR* & arg(f(z)) =0 [n]

2 — 21
” & — 1 =0
arg( Zz—|—4i> [7]

K & arg(—1) + arg(z — 2i> =0 [n]

z+ 44
. N 7r+ (zf z) (]
_ 1 _
2 '8 z+ 43 T
” o a (z—21> 7rH
r = — |7
& z+ 41 2

Notons A le point d’affixe 2i, B le point d’affixe —4i et M le point d’affixe z. D’apres la relation vue en
cours entre argument et angle, on a :
M

f(z) R & arg(jlii) = 7 [ & (A0, B

):g[ﬂ]avecM#AetM#B

La condition M # A vient du fait que 'on a exclu le cas z = 2i au début du calcul et la condition M # B
vient du fait que la fonction f n’est pas définie en z = —44.
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C’est équivalent a dire que M décrit le cercle de diametre [AB] privé de A et de B. On doit pour finir
I’étude ajouter le point A a I’ensemble recherché puisque si z = 2i alors f(z) = 0 qui est bien un nombre

réel.
Le lieu géométrique recherché est le cercle de centre — i et de rayon 3 privé de B I

(¢) On procede de méme qu’a la question précédente, en prenant z € C\ {—414,2i} :

s

arg(f()) =

—9;
27] < arg(—iz+4z> :g [27]

” o 7T+ (2—21') 7r[2]
—— 4ar = —
g TME\ T y) T T

z— 2

z+ 41

2

) = [27]

On reprend les mémes notations qu’a la question précédente en posant M d’affixe z, A d’affixe 2i et B
d’affixe —4i. La derniére égalité obtenue équivaut a dire que AM et BM ont la méme direction et un sens
opposé. Cest équivalent & M €]AB], en se souvenant que 'on a exclu au départ les cas M = A et M = B.

& arg<

Le lieu recherché est le segment ouvert |AB|

E-Le birapport

1. (a) 1. Si A, B, C et D sont alignés alors ils se situent sur une méme droite engendrée par un vecteur non

—
nul @ d’affixe u € C*. Ainsi les vecteurs CA, DA, Bg et C@ sont colinéaires au vecteur u, c’est-a-dire
qu'il existe (o, 8,7,0) € R* tels que :

a—c=au, a—d=pu, b—d=~uet b—c=du

De plus, il est possible de prendre «, 5, v et § non nuls car A, B, C et D sont supposés distincts.

Ju e C*, I(a,B,7,0) € R, a—c=ou, a—d=pu, b—d=ruetb—c=du

ii. D’apres la définition du birapport et en utilisant la question précédente, nous avons :

a—cxb—d_%xﬂ_gx
a—d b—c pu  Su B

Lorsque A, B,C et D sont alignés, le birapport est réel I

(b) i. Comme A, B, C et D sont sur le cercle de centre Q) et de rayon R, on a: QA =QB =QC = QD = R.

—
En d’autres termes, les vecteurs QA, Sﬁ, Sﬁ et Sﬁ sont de normes R ainsi il existe (61, 02,03,04) € R*
tels que :

[A:B:C:D] = %GR

a—w:Reiel, b—w:Rer, c—w:Rew:‘, d — w = Re'

C’est le résultat voulu :

3(61,0,03,04) € R, a =w+ Re®', b=w+ Re®, ¢ =w+ Re' et d = w+ Re'™
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ii. D’apres la question précédente et la définition du birapport, on a :

a—c b—d w+Re?” —w— Re®s w+ Ref? —w — Reifs el _ gifs  gif2 _ oifa

[A:B:C:D]:a—d>< b—c  w+t Re® —w— Reifa  w+ Rei®2 —w— Rets  cifi _cifs  oiba _ cifa

Pour simplifier ceci, on utilise la technique de I'angle moitié :

01103 _9- 02104 _ . "y . _
e’ 2 2zsm<%> e’ 2 2isin (92 04) sin (91 95) sin (92 04

2 2

{A:B:C:D]: ;01104 . 01—6, X j0210s . . 00—\ . [01—04 . (6s—65
e’ 2 2isin A5 e’ 2 2isin 2578 sin | 57 sin >

Dans ce calcul, les différents dénominateurs ne sont pas nuls car a # d et b # c.

Lorsque A, B,C et D sont cocycliques, le birapport est réel I

142
2. (a) D’apres I’énoncé, on a fj : z — z'l i

définie sur C \ {1}. Transformons 'expression de fj :

—Z
(1421 —-2) 1+ 2ilm(z) — |2]?
Jol@) =i g = p—p
— |2?

La partie imaginaire de fy(z) vaut donc Ainsi pour z € C\ {1}, nous avons :

11—z

fo(z) EReIm(f(z) =0 |2 =122¢cU

Vze C\ {1}, ze U< fo(z) eR

(b) Soit 8 € R. Pour z € C\ {e¢}, on a fs(2) qui est bien définie et e~z # 1 donc fy(e ?2) existe. On a :

260 —10
1 R
folz) =i 2 =i T C 2 f(eity)

=7 - =
el —z 1—ei02

Vz e C\ {e}, fo(2) = fole 2)

(c) Pour 6 € C\ {e”}, en utilisant la question précédente, on a :
foz) eRe fole2)eRee@2eUs2eU

ceci car e est lui-méme un nombre complexe de module 1.

Vze C\{e¥}, zeUs fo(z) eR
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(d) Pour (a,b,¢,d) € (C\ {1})?* distincts, on utilise la définition du birapport :

i e — g ke (L) [ Lxd
[fo(a) : fo(b) : fo(c) : fo(d)] = (1’“) <1*C) y (kb) (kd)

(—1+ (—1
— X
(rem) () (5
11 1 _ 1
1— 1— 1-b 1-d
= T T X T 1T

1-d)—(1—a (1—-¢)—(1-0)
_a—c _b—d
T a—db-c
= Ja:b:c:d]

(%) En effet, pour t € C\ {1}, on a :
14+t —1+4t+2 —14t, 2

1—¢  1—t __1—t_+1—t 1—¢

fo préserve le birapport I

Soit 6 € R et (a,b,c,d) € (C\ {e})* distincts, on a en utilisant la question précédente :

[fo(a) : fo(b) : fo(c) : fo(d)] = [fo(e™®a) : fo(e™b) : fole P ¢) : fole Pd)] = [e Pa:e b:e Pc:e ™ =[a:b:c:d]

La derniere égalité étant évidente a démontrer avec la définition du birapport.

Pour tout § € R, fy préserve le birapport I

Comme A, B et C sont alignés avec le méme raisonnement que dans la question 1.(a), on sait qu’il existe

u € C* et (a,B) € (R*)? tels que :
a—c=auetb—c=pu

Ainsi le birapport devient :
a:bic:d = au ><b—al_gb—d
T a—dT Bu PBa—d

o
D’apres 'hypothese de la question, on a [a : b : ¢ : d] € R et on sait que — € R, on en déduit que

b—d

a/ _
colinéaires. Finalement :

A, B, C et D sont alignés.

— —
pi € R. Or b — d est 'affixe de Zﬁ et a — d est aflixe de DA ainsi on sait que Zﬁ et DA sont
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(b)

i.

ii.

iii.

iv.

On suppose A, B et C non alignés. Les médiatrices de [AB] et [AC] se coupent en un point 2. Le
cercle de centre Q et de rayon r = QA € R contient les points A, B et C. C’est d’ailleurs le cercle
circonscrit au triangle ABC.

trois points non alignés sont cocycliques.

Le point M d’affixe z appartient au cercle de centre Q(w) et de rayon r si et seulement si QM = r ce
qui est équivalent & Pexistence de 6 € R tel que z —w = re?. Ainsi, pour z € C :

zZ— W
0

2€C&z2—w=ré =’ o h(z)=e’ o n(z)eU

VzeC, zeC< h(z)elU

C’est un calcul direct, pour (a,b,c,d) € C* distincts, remarquons que h(a), h(b), h(c) et h(d) sont
distincts car h est bijective et :

(h(a) : h(b) : h(e) : h(d)] = MY x

B a—cxb—d
 a—-d b-c
= Ja:b:c:d]

h préserve le birapport I

Soit 6 € R tel que e soit différent de h(a), h(b), h(c) et h(d). En utilisant les questions 2.(c) et 3.(b)ii.,
ona:

ze€C&o h(z) eU<« fy(h(z)) R

En particulier, montrer que D appartient a C est équivalent a démontrer que fy(h(d)) € R. Or :

[fo(h(a)) : fo(h(b)) : fo(h(c)) : fo(h(d))] = [h(a) : h(b) : h(c) : h(d)] = [a:b:c:d] € R

En utilisant le fait que fy et h préservent le birapport.
Enfin, on sait que les images des complexes fy(a), fo(b) et fo(c) sont alignées sur l'axe réel, on en
déduit d’apres la question 3.(a) que fp(d) est également réel ce qui donne bien que D appartient au

cercle C.
A, B, C et D sont cocycliques.

Finalement, nous avons démontré que si le birapport est réel alors A, B, C et D sont alignés ou
cocycliques. En utilisant la question 1., nous avons démontré I’équivalence :

[A:B:C:D]jeR< A B,C et D sont alignés ou cocycliques
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(c) Commencgons par mettre de coté les cas ou ces complexes ne sont pas distincts :

eilyalecasoul =z.

. 1
e si 1 = — alors on retrouve z = 1.
z

esil=1-—zalors 2 =0.

. 1
siz=—alorsz=1o0uz=-1.
z

1
esiz=1—z alors ontrouvez:i.

1+iv3

.1 2 oy .
esi — =1—zalors 2 — 24+ 1 = 0 et apres résolution cela donne : z = >
z
1 14+4/3 1—4v3

Finalement si z € {0, 1, -1, ok + 2@ \f, 22 \[}, alors les points ne sont pas tous distincts et on exclut
ce cas dans la suite.
Examinons le birapport :

1 1-1 —(1- 22— 1

[1:,2:7:1—2}: £ x Z ( Z): :
z 1—(1-2) z—1 2(z+1)

Regardons la partie imaginaire de ce complexe en posant z = x + iy avec (z,y) € R%. On a :

22—-1  2x+iy)—1 2z — 1+ 2iy 2z — 14 2iy)(x(x + 1) —y? —i(zy + y(z + 1))

2(z+1)  (z+w)(z+1+diy) =x@+1)—y2+i(zy+ylz+1)) lz(z+1) —y? +i(zy +y(z +1))]2
En développant, le numérateur a une partie imaginaire qui vaut y(2z(x 4 1) — 2y? — (22 —1)(2z 4+ 1)) et le
dénominateur est un réel. Apres, ces calculs préliminaires, on peut mettre en place une analyse-synthese.

e Analyse. On suppose que ces quatre points cocycliques, on sait que le birapport est alors réel. D’apres
le calcul précédent, nous avons donc :

y(2z(rx +1) —2y* — 2z —1)(2x +1)) =0

Ce qui nous apprend que y = 0 ou 222 + 2z — 2y?> — 422 + 1 = 0. Cette dernitre égalité se rééerit

(2-5) +* =1
— = =-.
2) TY T

1
Ces deux conditions, nous apprennent que M (z) est situé sur ’axe réel ou sur le cercle de centre (5, 0) et

3
de rayon 50 notons C ce cercle.

1

e Syntheése. Si z est réel, il est clair que 1, z, — et 1 — z sont des réels ainsi les quatre points sont alignés
z

et non cocycliques. Si M (z) appartient au cercle C alors M'(1 — z) également car M’ est le symétrique de

M par rapport au point d’affixe (5, O). Ainsi les images des complexes z, 1 — z et 3 sont alignées. On en

déduit que z, 1 — z et 1 ne peuvent pas étre alignés sauf si z est réel : ce cas-la concerne uniquement les

complexes qui sont les seuls points sur l'axe réel et sur le cercle. Si les points z, 1 — z et 1 ne sont

1
pas alignés, comme le birapport de z, 1 — z, — et 1 est réel alors ces quatre points sont cocycliques.
z

1 1
e Bilan. Les points 1, z, —, 1 — z sont cocycliques si et seulement si z appartient au cercle de centre <§, 0)
z

1++3

3 . .
et de rayon — privé des points 7




