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A-Généralités

1. Il y a deux cas à considérer :

• si c = 0 alors d 6= 0 grâce à la condition de l’énoncé (c, d) 6= (0, 0) ainsi f : z 7→ az + b

d
est clairement définie

sur C.

• si c 6= 0 alors f est définie sur C \
{
− d

c

}
afin que le dénominateur ne s’annule pas.

l’ensemble de définition de f est C si c = 0 et C \
{
− d

c

}
si c 6= 0

2. (a) D’après l’hypothèse de cette question, on a ad = bc ainsi en supposant de plus que a = 0, on a bc = 0 ce
qui donne deux cas :

• soit b = 0 et dans ce cas f est l’application nulle.

• soit c = 0 et dans ce cas f est l’application constante égale à
b

d
sachant que d est bien non nul car c = 0.

si a = 0 alors f est constante

(b) Si c = 0 alors ad = bc = 0, ce qui fait deux cas à considérer :

• soit d = 0 mais ce cas est à exclure car c et d ne peuvent s’annuler simultanément.

• soit a = 0 et dans ce cas f est à nouveau l’application constante égale à
b

d
.

si c = 0 alors f est constante

(c) Supposons à présent a 6= 0 et c 6= 0, l’hypothèse ad − bc = 0 se réécrit dans ce cas
b

a
=
d

c
. Ainsi pour z

dans l’ensemble de définition de f , nous avons :

f(z) =
az + b

cz + d
=
a
(
z + b

a

)
c
(
z + d

c

) =
a

c

Ce qui montre, dans ce cas également, que f est constante.

En résumé :

si ad− bc = 0 alors f est constante

3. (a) Si c = 0, nous savons que d 6= 0 et que f : z 7→ a

d
z +

b

d
est définie sur C. Pour montrer que c’est une

bijection de C dans C, on se donne (z, ω) ∈ C2 et on résout l’équation :

f(z) = ω ⇔ a

d
z +

b

d
= ω ⇔ z =

w − b
d

a
d

⇔ z =
d

a
ω − b

a

Ce calcul étant valable car si jamais a = 0 alors sachant que c = 0, on aurait ad− bc = 0 ce que nous avons
exclu.

si c = 0 alors f est une bijection de C dans C et f−1 : ω 7→ d

a
ω − b

a
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(b) On suppose que c 6= 0 et on tente également de résoudre l’équation pour z ∈ C \
{
− d

c

}
et ω ∈ C :

f(z) = ω ⇔ az + b

cz + d
= ω ⇔ az + b = (cz + d)ω ⇔ z(a− cω) = dω − b

À ce moment du calcul, deux cas se présentent :

• si ω =
a

c
alors l’équation devient 0 =

da

c
− b, c’est-à-dire 0 = da− bc, ce qui est exclu, ainsi ω0 =

a

c
n’a

pas d’antécédent par f .

• en revanche pour ω 6= a

c
, il est possible de terminer le calcul précédent et nous obtenons z =

dω − b
a− cω

.

Ceci montre que f est une bijection de C \
{
− d

c

}
vers C \

{a
c

}
et :

f−1 : C \
{a
c

}
→ C \

{
− d

c

}
ω 7→ dω − b

a− cω

4. Afin de trouver un point fixe, nous devons étudier l’équation f(z) = z. Distinguons deux cas :

• si c = 0, l’équation devient :

f(z) = z ⇔ az + b = dz ⇔ (a− d)z + b = 0

Si a = d alors l’équation devient b = 0 :

I si b = 0, comme c = 0 et a = d alors f = idC ce qui est exclu dans la question.

I si b 6= 0, alors f(z) = z n’a aucune solution et il n’y a pas de point fixe.

• si c 6= 0, on a :
f(z) = z ⇔ az + b = z(cz + d)⇔ cz2 − az + dz − b = 0

C’est une équation de degré exactement 2 qui possède, d’après le cours, 1 ou 2 solutions, que l’on ne demande
pas de trouver.

Nous avons traité les différents cas et en résumé :

une homographie différente de l’identité possède 0, 1 ou 2 points fixes

À titre d’exemple :

• f : z 7→ z + 1 qui correspond au cas où a = b = d = 1 et c = 0 n’a clairement pas de point fixe.

• f : z 7→ 2z qui correspond au cas où a = 2, b = 0, c = 0 et d = 1 a pour unique point fixe 0.

• f : z 7→ 1

z
qui correspond au cas où a = 0, b = 0, c = 1 et d = 0 a deux points fixes 1 et −1. En effet, la

résolution de l’équation f(z) = z, c’est-à-dire
1

z
= z est immédiate.
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B-Cas où c = 0 et d = 1 : les similitudes directes

1. (a) Dans cette partie c = 0 ainsi nous avons forcément a 6= 0 car si a = 0 alors ad − bc = 0 ce qui est exclu
d’après la partie A.

f : z 7→ az + b avec a 6= 0

(b) Si a = 1, l’application f : z 7→ z+ b est la représentation complexe de la translation de vecteur ~u d’affixe b.
Dans le cas où a 6= 1, nous savons d’après le cours que f est la composée de la rotation de centre Ω d’affixe

ω =
b

1− a
et d’angle un argument de a et de l’homothétie de centre Ω et de rapport |a|.

2. (a) D’après le cours, la rotation de centre A d’affixe a = −1 + 3i et d’angle
π

6
a pour écriture complexe :

r(z) = ei
π
6 (z − a) + a = ei

π
6 (z + 1− 3i)− 1 + 3i

r(z) = ei
π
6 (z + 1− 3i)− 1 + 3i

(b) D’après le cours, l’homothétie de centre B d’affixe b = 1 + 2i et de rapport −2 a pour écriture complexe :

h(z) = −2(z − b) + b = −2(z − 1− 2i) + 1 + 2i

h(z) = −2(z − 1− 2i) + 1 + 2i

(c) Voici les éléments caractéristiques de cette similitude directe :

• le rapport vaut | − 2 + 2i| = 2
√

2.

• une mesure de l’angle de cette similitude est un argument de −2 + 2i = 2
√

2ei
3π
4 , c’est-à-dire

3π

4
.

• le centre de la similitude s’obtient par résolution de l’équation :

ω = (−2 + 2i)ω + 5 + i ⇔ ω(1 + 2− 2i) = 5 + i

⇔ ω =
5 + i

3− 2i

⇔ ω =
(5 + i)(3 + 2i)

13

⇔ ω = 1 + i

s est la similitude directe de centre Ω(1 + i), d’angle
3π

4
, de rapport 2

√
2

3. Soit s : z 7→ az + b une similitude avec (a, b) ∈ C2 et a 6= 1. On suppose que z1 et z2 sont deux points fixes de s
distincts. C’est-à-dire que : {

z1 = az1 + b
z2 = az2 + b
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En retranchant les deux lignes, on a : z1 − z2 = a(z1 − z2). Comme z1 6= z2, on peut simplifier par z1 − z2 pour
obtenir a = 1. Enfin, en reportant ceci dans l’une des égalités précédentes, on a : b = 0.

La seule similitude possédant deux points fixes est f : z 7→ z

4. D’après la question 3. de la partie A, nous savons que s est bijective ainsi zA′ , zB′ et zC′ sont distincts car zA,

zB et zC le sont. Une mesure de l’angle orienté (
−−→
A′B′,

−−→
A′C ′) est égal à un argument de

zC′ − zA′

zB′ − zA′
, nous avons :

zC′ − zA′

zB′ − zA′
=
azC + b− (azA + b)

azB + b− (azA + b)
=
a(zC − zA)

a(zB − zA)
=
zC − zA
zB − zA

Or un argument de
zC − zA
zB − zA

est égal à une mesure de l’angle orienté (
−−→
AB,

−→
AC).

Les similitudes directes préservent les angles orientés

C-Étude de l’inversion

1. (a) Montrons que f(C∗) = C∗ par double inclusion.

• Soit z ∈ C∗, on a clairement f(z) =
1

z
∈ C∗. D’où f(C∗) ⊂ C∗.

• Réciproquement, si ω ∈ C∗, on a f(ω−1) = ω avec ω−1 ∈ C∗, ainsi C∗ ⊂ f(C∗).

f(C∗) = C∗

(b) Montrons que f(Un) = Un par double inclusion.

• Soit n ∈ N∗ et z ∈ Un. On a
1

z
qui est également un élément de Un car :

(1

z

)n
=

1

zn
= 1

Ainsi f(Un) ⊂ Un.

• Réciproquement, si ω ∈ Un, on a :

f
( 1

ω

)
= ω

et
1

ω
∈ Un avec le même calcul que ci-dessus. On en déduit que Un ⊂ f(Un).

f(Un) = Un

(c) On a directement :

f({1 + 2i, i}) =
{ 1

1 + 2i
,
1

i

}
=
{1− 2i

5
,−i
}

f({1 + 2i, i}) =
{1− 2i

5
,−i
}
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(d) Allons un peu plus vite car il est évident que pour z ∈ C∗, on a :

z ∈ R∗+ ⇔
1

z
∈ R∗+

f(R∗+) = R∗+

2. Il est ici intéressant de remarquer que f est une bijection de C∗ dans C∗ et f−1 = f .

(a) Avec cette remarque, nous avons :

f−1({−1− 4i, 4}) = f({−1− 4i, 4}) =
{−1 + 4i

17
,
1

4

}

f−1({−1− 4i, 4}) =
{−1 + 4i

17
,
1

4

}
(b) On peut répondre à cette question en rédigeant ainsi :

f−1(U) =
{
z ∈ C∗,

1

z
∈ U

}
=
{
z ∈ C∗,

∣∣∣1
z

∣∣∣ = 1
}

= {z ∈ C∗, |z| = 1} = U

f−1(U) = U

(c) On a :

f−1(iR) =
{
z ∈ C∗,

1

z
∈ iR

}
=
{
z ∈ C∗, ∃b ∈ R∗,

1

z
= ib

}
=
{
z ∈ C∗, ∃b ∈ R∗, z = i

1

b

}
= iR∗

f−1(iR) = iR∗

(d) Soient (a, b) ∈ R2 avec (a, b) 6= (0, 0) et z = a+ ib, on a :

f(z) =
1

z
=

1

a+ ib
=

a

a2 + b2
− i b

a2 + b2

Ainsi :
Re(f)(z) > 0⇔ a > 0⇔ Re(f) > 0

On en déduit que :

Re(f)−1(R∗+) = {z ∈ C, Re(z) > 0}

3. Il est clair que pour z ∈ C∗ et ω ∈ C∗, on a :

f(z) = ω ⇔ 1

z
= ω ⇔ z =

1

ω

On en déduit que f est une bijection de C∗ dans C∗ et que :

f−1 = f



MPSI2 DS3 Mathématiques Corrigé

4. (a) L’application f réalise une bijection de R∗ dans R∗, on en déduit que :

f(R∗) = R∗

De même, en reprenant la démarche de la question 2.(c), on obtient :

f(iR∗) = iR∗

(b) Considérons une droite dirigée par le vecteur unitaire −→u d’affixe zu. Le point M d’affixe z appartient à

cette droite privée de l’origine si et seulement s’il existe α ∈ R∗ tel que
−−→
OM = α−→u . Cette égalité se traduit

par z = αzu ce qui est équivalent à
1

z
=

1

α

1

zu
=

1

α
zu ceci étant donné que

1

zu
= zu puisque |zu| = 1. Nous

avons démontré que l’image de la droite passant par l’origine et dirigée par −→u (zu) est la droite passant par
l’origine et dirigée par le vecteur −→v (zu).

L’image d’une droite passant par l’origine est un droite passant par l’origine

(c) i. Le point M d’affixe z appartient à la droite (AB) si et seulement si
−−→
AM et

−−→
AB sont colinéaires, c’est-

à-dire si et seulement si
z − 1

1− i
∈ R, c’est-à-dire ((a+ ib)− 1)× 1 + i

2
∈ R. La partie imaginaire de ce

nombre complexe vaut
1

2

(
b+ a− 1) = 0, ce qui équivaut bien à b = 1− a.

M(z = a+ ib) appartient à (AB) si et seulement si b = 1− a

ii. Pour calculer la distance proposée par l’énoncé, examinons pour z = a+ ib tel que M(z) ∈ (AB) :∣∣∣ 1

a+ ib
− 1− i

2

∣∣∣2 =
∣∣∣2− (a+ ib)(1− i)

2(a+ ib)

∣∣∣2
=

∣∣∣1 + i(−1 + 2a)

2(a+ ib)

∣∣∣2
=

1 + (2a− 1)2

4(a2 + b2)

=
2− 4a+ 4a2

4(a2 + (1− a)2
en utilisant la relation b = 1− a

=
2− 4a+ 4a2

8a2 − 8a+ 4

=
1

2

On en déduit que :

M ′(f(z)) est à distance
1√
2

du point C
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iii. On en déduit que l’image par f de la droite (AB) est incluse dans le cercle de centre C et de rayon
1√
2

.

Réciproquement, nous devons déterminer quels sont les points de ce cercle qui possèdent un antécédent
appartenant à la droite (AB).

Remarquons déjà que ce cercle passe par l’origine du repère car
∣∣∣1− i

2

∣∣∣ =
1√
2

. Prenons M ′(ω) un point

du cercle qui n’est pas l’origine du repère (en effet il est évident que 0 n’a pas d’antécédent par f).

On a :
∣∣∣ω − 1− i

2

∣∣∣2 =
1

2
. On multiplie par 2 et on développe le module au carré pour obtenir :

2ωω − (1 + i)ω − (1− i)ω + 1 = 1

On divise par ωω qui est non nul car ω 6= 0 pour obtenir :

2− 1 + i

ω
− 1− i

ω
= 0

Posons z = a+ ib ∈ C tel que z =
1

ω
, nous obtenons :

2− (1 + i)z − (1− i)z = 0

En utilisant la forme algébrique de z, en développant et en simplifiant, il vient b = 1 − a, ce qui est
bien l’équation de la droite (AB). Ainsi, on a trouvé un antécédent de ω par f qui appartient à (AB).

On conclut :

La droite (AB) a pour image par f le cercle de centre C et de rayon
1√
2

5. (a) Les affixes des points du cercle de centre O et de rayon r ∈ R∗+ sont les nombres complexes de la forme

z = reiθ où θ ∈ R. Or :

f(z) =
1

z
=

1

reiθ
=

1

r
e−iθ

Quand θ décrit R, on a −θ qui décrit également R. On reconnait à nouveau la description d’un cercle.

L’image du cercle de centre O et de rayon r est le cercle de centre O et de rayon
1

r

(b) i. Le cercle CD est de rayon r. Les points du cercle sont exactement les points M d’affixe z tels que
DM = r, ce qui se traduit avec le module par |z − zD| = r, en élevant au carré cela donne :

L’équation du cercle de centre C est |z − zD|2 = r2

ii. On développe le module précédent :

|z − zD|2 = r2 ⇔ (z − zD)(z − zD) = r2 ⇔ zz − zDz − zzD + |zD|2 − r2 = 0

L’équation du cercle est zz − zDz − zzD + |zD|2 − r2 = 0
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iii. Dans ce cas particulier, l’équation précédente devient :

zz − zDz − zzD = 0

On pose Z =
1

z
afin d’appliquer l’inversion et en divisant par zz qui est non nul, on obtient :

1− zDZ − zDZ = 0

Ce qui équivaut à 1 = 2Re(zDZ). On pose zD = d1 + id2 et Z = x+ iy avec (d1, d2, x, y) ∈ R4, il vient :

2d1x− 2d2y = 1

Ce qui est bien l’équation d’une droite ne passant pas par l’origine et toute droite ne passant pas par
l’origine possède bien une équation de cette forme.

L’inclusion réciproque est vérifiée car f est une bijection de C∗ dans C∗ :

l’image d’un cercle passant par l’origine est une droite ne passant pas par l’origine

iv. Pour simplifier, on note k = |zD|2 − r2 ainsi dans cette question, l’équation du cercle CD est :

zz − zDz − zzD + k = 0

On divise également par zz, z étant bien non nul et on pose Z =
1

z
afin d’appliquer l’inversion.

On obtient :
1− zDZ − zDZ + kZZ = 0

En réorganisant ceci, nous obtenons : ∣∣∣Z − zD
k

∣∣∣2 = k′

où k′ est une nouvelle constante. Ceci est bien l’équation d’un cercle de centre d’affixe
zD
k

.

l’image d’un cercle ne passant pas par l’origine est un cercle

D-Exemples d’homographies

1. (a) Il s’agit de vérifier la condition de l’énoncé : ad− bc 6= 0. Pour h, on a a = i, b = i, c = −1 et d = 1 donc
ad− bc = i− (−i) = 2i 6= 0.

h est une homographie définie sur C \ {1}

(b) Soit z ∈ U \ {1}, nous allons démontrer que h(z) = h(z), ce qui démontrera bien que h(z) ∈ R d’après la
caractérisation d’un réel à l’aide du conjugué. La principale propriété que l’on va utiliser dans le calcul à

venir est que pour tout z ∈ U \ {1}, 1

z
= z puisque zz = |z|2 = 1. Pour tout z ∈ U \ {1} :

h(z) =
(
i
1 + z

1− z

)
= i

1 + z

1− z
= −i1 + z

1− z
= −i

1 + 1
z

1− 1
z

= −iz + 1

z − 1︸ ︷︷ ︸
on a multiplié par z

z

= i
z + 1

1− z
= h(z)

∀z ∈ U \ {1}, h(z) ∈ R
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(c) Donnons-nous pour cette question z ∈ D, il s’agit de démontrer que h(z) ∈ P , c’est-à-dire que Im(h(z)) > 0.
Pour cela, une méthode consiste à utiliser la forme algébrique de z, posons z = x+iy où (x, y) ∈ R2. Remar-
quons également que z 6= 1 puisque |z| < 1, ainsi le calcul de h(z) a un sens. En multipliant le dénominateur
par la quantité conjuguée, on a :

h(z) = i
1 + x+ iy

1− x− iy
= i

(1 + x+ iy)(1− x+ iy)

(1− x)2 + y2
= i

1− x2 − y2 + 2iy

(1− x)2 + y2
=

1

(1− x)2 + y2

(
−2y+i(1−x2−y2)

)
Or par hypothèse z ∈ D, donc |z| < 1, ce qui implique que |z|2 = x2 + y2 < 1 ou encore 0 < 1− x2 − y2.
Ceci permet de conclure puisque :

Im(h(z)) =
1− x2 − y2

(1− x)2 + y2
> 0

∀z ∈ D, h(z) ∈ P

(d) Soit z un nombre complexe différent de 1 :

h(z) = z ⇔ i
1 + z

1− z
= z

” ⇔ i+ iz = z − z2 , cette équivalence est correcte car 1 n’est pas solution

” ⇔ z2 + (i− 1)z + i = 0

On reconnâıt une équation du second degré à coefficients complexes. Le discriminant de l’équation est

∆ = (i − 1)2 − 4i = −6i, on applique la méthode vue en cours pour trouver les racines. On recherche un
nombre complexe δ tel que δ2 = ∆ avec δ = x+ iy où (x, y) ∈ R2, on obtient de façon usuelle le système :

x2 − y2 = 0
2xy = −6

x2 + y2 = 6

Les équations 1 et 3 permettent de trouver x2 = 3 et y2 = 3 et l’équation 2 permet de dire que x et y sont
de signes opposés. Ainsi, on peut choisir δ =

√
3 − i

√
3 et les deux solutions de l’équation du second de

degré sont

z1 =
1 +
√

3− i(1 +
√

3)

2
et z2 =

1−
√

3 + i(−1 +
√

3)

2

Les solutions de l’équation h(z) = z sont
1 +
√

3− i(1 +
√

3)

2
et

1−
√

3 + i(−1 +
√

3)

2

2. (a) Dans le cas de g, les coefficients sont a = 1, b = −i, c = 1 et d = i, ainsi ad− bc = i− (−i) = 2i 6= 0.

g est une homographie définie sur C \ {−i}

(b) Soit z ∈ R, démontrons que |g(z)|2 = g(z)g(z) = 1 ainsi on aura bien g(z) ∈ U .

g(z)g(z) =
z − i
z + i

× z + i

z − i

=
z − i
z + i

× z + i

z − i
car z est réel donc z = z

= 1
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∀z ∈ R, g(z) ∈ U

(c) Soit z ∈ P , c’est-à-dire que Im(z) > 0, on doit démontrer que |g(z)| < 1. Pour cela, on effectue le calcul
suivant :

g(z)g(z) =
z − i
z + i

× z + i

z − i

=
zz + 1 + i(z − z)
zz + 1 + i(z − z)

=
zz + 1 + i(2iIm(z))

zz + 1− i(2iIm(z))
car z − z = 2iIm(z)

=
zz + 1− 2Im(z)

zz + 1 + 2Im(z)
< 1

Ce quotient est inférieur à 1 puisque zz + 1− 2Im(z) < zz + 1 + 2Im(z) car Im(z) > 0. Finalement, on
a démontré que g(z)g(z) = |g(z)|2 < 1 donc |g(z)| < 1.

∀z ∈ P, g(z) ∈ D

3. (a) La fonction f peut se réécrire f : z 7→ −iz − 2

z + 4i
. Ses coefficients sont a = −i, b = −2, c = 1 et d = 4i, on

a : −i× 4i− (−2)× 1 = 6 6= 0.

f est une homographie définie sur C \ {−4i}

(b) Soit z ∈ C \ {−4i}. Remarquons que f(z) = 0 si et seulement si z = 2i. Ainsi pour z = 2i, f(z) est réel.
Excluons ce cas par la suite puisque l’on va se servir d’un argument de f(z) :

f(z) ∈ R∗ ⇔ arg(f(z)) = 0 [π]

” ⇔ arg
(
− iz − 2i

z + 4i

)
= 0 [π]

” ⇔ arg(−i) + arg
(z − 2i

z + 4i

)
= 0 [π]

” ⇔ −π
2

+ arg
(z − 2i

z + 4i

)
= 0 [π]

” ⇔ arg
(z − 2i

z + 4i

)
=
π

2
[π]

Notons A le point d’affixe 2i, B le point d’affixe −4i et M le point d’affixe z. D’après la relation vue en
cours entre argument et angle, on a :

f(z) ∈ R∗ ⇔ arg
(z − 2i

z + 4i

)
=
π

2
[π]⇔ (

−−→
AM,

−−→
BM) =

π

2
[π] avec M 6= A et M 6= B

La condition M 6= A vient du fait que l’on a exclu le cas z = 2i au début du calcul et la condition M 6= B
vient du fait que la fonction f n’est pas définie en z = −4i.
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C’est équivalent à dire que M décrit le cercle de diamètre [AB] privé de A et de B. On doit pour finir
l’étude ajouter le point A à l’ensemble recherché puisque si z = 2i alors f(z) = 0 qui est bien un nombre
réel.

Le lieu géométrique recherché est le cercle de centre − i et de rayon 3 privé de B

(c) On procède de même qu’à la question précédente, en prenant z ∈ C \ {−4i, 2i} :

arg(f(z)) =
π

2
[2π] ⇔ arg

(
− iz − 2i

z + 4i

)
=
π

2
[2π]

” ⇔ −π
2

+ arg
(z − 2i

z + 4i

)
=
π

2
[2π]

” ⇔ arg
(z − 2i

z + 4i

)
= π [2π]

On reprend les mêmes notations qu’à la question précédente en posant M d’affixe z, A d’affixe 2i et B

d’affixe −4i. La dernière égalité obtenue équivaut à dire que
−−→
AM et

−−→
BM ont la même direction et un sens

opposé. C’est équivalent à M ∈]AB[, en se souvenant que l’on a exclu au départ les cas M = A et M = B.

Le lieu recherché est le segment ouvert ]AB[

E-Le birapport

1. (a) i. Si A, B, C et D sont alignés alors ils se situent sur une même droite engendrée par un vecteur non

nul ~u d’affixe u ∈ C∗. Ainsi les vecteurs
−→
CA,

−−→
DA,

−−→
DB et

−−→
CB sont colinéaires au vecteur ~u, c’est-à-dire

qu’il existe (α, β, γ, δ) ∈ R4 tels que :

a− c = αu, a− d = βu, b− d = γu et b− c = δu

De plus, il est possible de prendre α, β, γ et δ non nuls car A, B, C et D sont supposés distincts.

∃u ∈ C∗, ∃(α, β, γ, δ) ∈ (R∗)4, a− c = αu, a− d = βu, b− d = γu et b− c = δu

ii. D’après la définition du birapport et en utilisant la question précédente, nous avons :

[A : B : C : D] =
a− c
a− d

× b− d
b− c

=
αu

βu
× γu

δu
=
α

β
× γ

δ
∈ R

Lorsque A,B,C et D sont alignés, le birapport est réel

(b) i. Comme A, B, C et D sont sur le cercle de centre Ω et de rayon R, on a : ΩA = ΩB = ΩC = ΩD = R.

En d’autres termes, les vecteurs
−→
ΩA,

−→
ΩB,

−→
ΩC et

−−→
ΩD sont de normes R ainsi il existe (θ1, θ2, θ3, θ4) ∈ R4

tels que :
a− w = Reiθ1 , b− w = Reiθ2 , c− w = Reiθ3 , d− w = Reiθ4

C’est le résultat voulu :

∃(θ1, θ2, θ3, θ4) ∈ R4, a = ω +Reθ1 , b = ω +Reiθ2 , c = ω +Reiθ3 et d = ω +Reiθ4
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ii. D’après la question précédente et la définition du birapport, on a :

[A : B : C : D] =
a− c
a− d

× b− d
b− c

=
ω +Reiθ1 − ω −Reiθ3
ω +Reiθ1 − ω −Reiθ4

× ω +Reiθ2 − ω −Reiθ4
ω +Reiθ2 − ω −Reiθ3

=
eiθ1 − eiθ3
eiθ1 − eiθ4

× eiθ2 − eiθ4
eiθ2 − eiθ3

Pour simplifier ceci, on utilise la technique de l’angle moitié :

[A : B : C : D] =
ei
θ1+θ3

2 2i sin
(
θ1−θ3

2

)
ei
θ1+θ4

2 2i sin
(
θ1−θ4

2

) × ei
θ2+θ4

2 2i sin
(
θ2−θ4

2

)
ei
θ2+θ3

2 2i sin
(
θ2−θ3

2

) =
sin
(
θ1−θ3

2

)
sin
(
θ1−θ4

2

) × sin
(
θ2−θ4

2

)
sin
(
θ2−θ3

2

) ∈ R

Dans ce calcul, les différents dénominateurs ne sont pas nuls car a 6= d et b 6= c.

Lorsque A,B,C et D sont cocycliques, le birapport est réel

2. (a) D’après l’énoncé, on a f0 : z 7→ i
1 + z

1− z
définie sur C \ {1}. Transformons l’expression de f0 :

f0(z) = i
(1 + z)(1− z)
|1− z|2

= i
1 + 2iIm(z)− |z|2

|1− z|2

La partie imaginaire de f0(z) vaut donc
1− |z|2

|1− z|2
. Ainsi pour z ∈ C \ {1}, nous avons :

f0(z) ∈ R⇔ Im(f(z)) = 0⇔ |z|2 = 1⇔ z ∈ U

∀z ∈ C \ {1}, z ∈ U⇔ f0(z) ∈ R

(b) Soit θ ∈ R. Pour z ∈ C \ {eiθ}, on a fθ(z) qui est bien définie et e−iθz 6= 1 donc f0(e−iθz) existe. On a :

fθ(z) = i
eiθ + z

eiθ − z
= i

1 + e−iθz

1− e−iθz
= f0(e−iθz)

∀z ∈ C \ {eiθ}, fθ(z) = f0(e−iθz)

(c) Pour θ ∈ C \ {eiθ}, en utilisant la question précédente, on a :

fθ(z) ∈ R⇔ f0(e−iθz) ∈ R⇔ e−iθz ∈ U⇔ z ∈ U

ceci car e−iθ est lui-même un nombre complexe de module 1.

∀z ∈ C \ {eiθ}, z ∈ U⇔ fθ(z) ∈ R



MPSI2 DS3 Mathématiques Corrigé

(d) Pour (a, b, c, d) ∈ (C \ {1})4 distincts, on utilise la définition du birapport :

[f0(a) : f0(b) : f0(c) : f0(d)] =
i
(

1+a
1−a

)
− i
(

1+c
1−c

)
i
(

1+a
1−a

)
− i
(

1+d
1−d

) × i
(

1+b
1−b

)
− i
(

1+d
1−d

)
i
(

1+b
1−b

)
− i
(

1+c
1−c

)

=

(
− 1 + 2

1−a

)
−
(
− 1 + 2

1−c

)
(
− 1 + 2

1−a

)
−
(
− 1 + 2

1−d

) ×
(
− 1 + 2

1−b

)
−
(
− 1 + 2

1−d

)
(
− 1 + 2

1−b

)
−
(
− 1 + 2

1−c

) (F)

=
1

1−a −
1

1−c
1

1−a −
1

1−d
×

1
1−b −

1
1−d

1
1−b −

1
1−c

=
(1− c)(1− d)− (1− a)(1− d)

(1− c)(1− d)− (1− a)(1− c)
× (1− d)(1− c)− (1− b)(1− c)

(1− c)(1− d)− (1− b)(1− d)

=
(1− c)− (1− a)

(1− d)− (1− a
× (1− d)− (1− b)

(1− c)− (1− b)

=
a− c
a− d

× b− d
b− c

= [a : b : c : d]

(F) En effet, pour t ∈ C \ {1}, on a :

1 + t

1− t
=
−1 + t+ 2

1− t
=
−1 + t

1− t
+

2

1− t
= −1 +

2

1− t

f0 préserve le birapport

(e) Soit θ ∈ R et (a, b, c, d) ∈ (C \ {eiθ})4 distincts, on a en utilisant la question précédente :

[fθ(a) : fθ(b) : fθ(c) : fθ(d)] = [f0(e−iθa) : f0(e−iθb) : f0(e−iθc) : f0(e−iθd)] = [e−iθa : e−iθb : e−iθc : e−iθd] = [a : b : c : d]

La dernière égalité étant évidente à démontrer avec la définition du birapport.

Pour tout θ ∈ R, fθ préserve le birapport

3. (a) Comme A, B et C sont alignés avec le même raisonnement que dans la question 1.(a), on sait qu’il existe
u ∈ C∗ et (α, β) ∈ (R∗)2 tels que :

a− c = αu et b− c = βu

Ainsi le birapport devient :

[a : b : c : d] =
αu

a− d
× b− d

βu
=
α

β

b− d
a− d

D’après l’hypothèse de la question, on a [a : b : c : d] ∈ R et on sait que
α

β
∈ R, on en déduit que

b− d
a− d

∈ R. Or b − d est l’affixe de
−−→
DB et a − d est l’affixe de

−−→
DA ainsi on sait que

−−→
DB et

−−→
DA sont

colinéaires. Finalement :
A, B, C et D sont alignés
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(b) i. On suppose A, B et C non alignés. Les médiatrices de [AB] et [AC] se coupent en un point Ω. Le
cercle de centre Ω et de rayon r = ΩA ∈ R∗+ contient les points A, B et C. C’est d’ailleurs le cercle
circonscrit au triangle ABC.

trois points non alignés sont cocycliques

ii. Le point M d’affixe z appartient au cercle de centre Ω(ω) et de rayon r si et seulement si ΩM = r ce
qui est équivalent à l’existence de θ ∈ R tel que z − ω = reiθ. Ainsi, pour z ∈ C :

z ∈ C ⇔ z − ω = reiθ ⇔ z − ω
r

= eiθ ⇔ h(z) = eiθ ⇔ h(z) ∈ U

∀z ∈ C, z ∈ C ⇔ h(z) ∈ U

iii. C’est un calcul direct, pour (a, b, c, d) ∈ C4 distincts, remarquons que h(a), h(b), h(c) et h(d) sont
distincts car h est bijective et :

[h(a) : h(b) : h(c) : h(d)] =
h(a)− h(c)

h(a)− h(d)
× h(b)− h(d)

h(b)− h(c)

=
a−ω
r −

c−ω
r

a−ω
r −

d−ω
r

×
b−ω
r −

d−ω
r

b−ω
r −

c−ω
r

=
a− ω − (c− ω)

a− ω − (d− ω)
× b− ω − (d− ω)

b− ω − (c− ω)

=
a− c
a− d

× b− d
b− c

= [a : b : c : d]

h préserve le birapport

iv. Soit θ ∈ R tel que eiθ soit différent de h(a), h(b), h(c) et h(d). En utilisant les questions 2.(c) et 3.(b)ii.,
on a :

z ∈ C ⇔ h(z) ∈ U⇔ fθ(h(z)) ∈ R

En particulier, montrer que D appartient à C est équivalent à démontrer que fθ(h(d)) ∈ R. Or :

[fθ(h(a)) : fθ(h(b)) : fθ(h(c)) : fθ(h(d))] = [h(a) : h(b) : h(c) : h(d)] = [a : b : c : d] ∈ R

En utilisant le fait que fθ et h préservent le birapport.

Enfin, on sait que les images des complexes fθ(a), fθ(b) et fθ(c) sont alignées sur l’axe réel, on en
déduit d’après la question 3.(a) que fθ(d) est également réel ce qui donne bien que D appartient au
cercle C.

A, B, C et D sont cocycliques

v. Finalement, nous avons démontré que si le birapport est réel alors A, B, C et D sont alignés ou
cocycliques. En utilisant la question 1., nous avons démontré l’équivalence :

[A : B : C : D] ∈ R⇔ A,B,C et D sont alignés ou cocycliques
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(c) Commençons par mettre de côté les cas où ces complexes ne sont pas distincts :

• il y a le cas où 1 = z.

• si 1 =
1

z
alors on retrouve z = 1.

• si 1 = 1− z alors z = 0.

• si z =
1

z
alors z = 1 ou z = −1.

• si z = 1− z alors on trouve z =
1

2
.

• si
1

z
= 1− z alors z2 − z + 1 = 0 et après résolution cela donne : z =

1± i
√

3

2
.

Finalement si z ∈
{

0, 1,−1,
1

2
,
1 + i

√
3

2
,
1− i

√
3

2

}
, alors les points ne sont pas tous distincts et on exclut

ce cas dans la suite.

Examinons le birapport :[
1 : z :

1

z
: 1− z

]
=

1− 1
z

1− (1− z)
× z − (1− z)

z − 1
z

=
2z − 1

z(z + 1)

Regardons la partie imaginaire de ce complexe en posant z = x+ iy avec (x, y) ∈ R2. On a :

2z − 1

z(z + 1)
=

2(x+ iy)− 1

(x+ iy)(x+ 1 + iy)
=

2x− 1 + 2iy

x(x+ 1)− y2 + i(xy + y(x+ 1))
=

(2x− 1 + 2iy)(x(x+ 1)− y2 − i(xy + y(x+ 1)))

|x(x+ 1)− y2 + i(xy + y(x+ 1))|2

En développant, le numérateur a une partie imaginaire qui vaut y(2x(x+ 1)− 2y2− (2x− 1)(2x+ 1)) et le
dénominateur est un réel. Après, ces calculs préliminaires, on peut mettre en place une analyse-synthèse.

• Analyse. On suppose que ces quatre points cocycliques, on sait que le birapport est alors réel. D’après
le calcul précédent, nous avons donc :

y(2x(x+ 1)− 2y2 − (2x− 1)(2x+ 1)) = 0

Ce qui nous apprend que y = 0 ou 2x2 + 2x − 2y2 − 4x2 + 1 = 0. Cette dernière égalité se réécrit(
x− 1

2

)2
+ y2 =

3

4
.

Ces deux conditions, nous apprennent que M(z) est situé sur l’axe réel ou sur le cercle de centre
(1

2
, 0
)

et

de rayon

√
3

2
, notons C ce cercle.

• Synthèse. Si z est réel, il est clair que 1, z,
1

z
et 1− z sont des réels ainsi les quatre points sont alignés

et non cocycliques. Si M(z) appartient au cercle C alors M ′(1− z) également car M ′ est le symétrique de

M par rapport au point d’affixe
(1

2
, 0
)

. Ainsi les images des complexes z, 1− z et
1

2
sont alignées. On en

déduit que z, 1 − z et 1 ne peuvent pas être alignés sauf si z est réel : ce cas-là concerne uniquement les

complexes
1±
√

3

2
qui sont les seuls points sur l’axe réel et sur le cercle. Si les points z, 1− z et 1 ne sont

pas alignés, comme le birapport de z, 1− z, 1

z
et 1 est réel alors ces quatre points sont cocycliques.

• Bilan. Les points 1, z,
1

z
, 1−z sont cocycliques si et seulement si z appartient au cercle de centre

(1

2
, 0
)

et de rayon

√
3

2
privé des points

1±
√

3

2
.


