Chapitre 13

Relations binaires
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Chapitre 13 I

I-Vocabulaire

Définition

On appelle relation binaire sur un ensemble E la donnée d'une partie R

de E2. Au lieu de noter (x,y) € R, on notera : xRy (ce qui se lit x est en
relation avec y).
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suivante :

Exemple. On considére E = {a, b, c, d} et on choisit la relation binaire

72,=={(a,a),(a,b),(b,a),(b,d),(c,d)}

On écrira donc dans ce cas :

aRa, aRb, bRa, bRd, cRd
<O <@y <=y <Er E HAX
R V2 B



Chapitre 13

Exemples.
i) Soit E un ensemble, on définit la relation Ry par :

V(x,y) € E?, xRiy & x=y
i) Avec E = R, on définit la relation R par :
V(x,y) € R?, xRay & x <y
iii) Avec E = F(R,R), on définit la relation R3 par :
Y(f,g) € F(R,R)?, fRsg < Vx € R, f(x) < g(x)
iv) Avec E = Z, on définit la relation R4 par :

V(a, b) € Z?, aR4b < alb
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Soit R une relation binaire sur un ensemble E.

i) On dit que R est réflexive si et seulement si :
Vx € E, xRx

i) On dit que R est transitive si et seulement si :
Y(x,y,z) € E3, xRy et yRz = xRz

iii) On dit que R est symétrique si et seulement si :
Y(x,y) € E2, xRy = yRx

iv) On dit que R est antisymétrique si et seulement si :

V(X7y) S E27 XRy et yRXiX:y
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Exemples. On reprend les mémes exemples que précédemment.

i) La relation Ry d’égalité sur un ensemble E. Prenons (x,y, z) € ES.
Cette relation est :

e Réflexive. On a bien xR1x car x = x.

e Transitive. On suppose que xR1y et yR1z, c'est-a-dire que x = y et
y = z. On en déduit que x = z donc xR;z.

e Symétrique. On suppose que xRy alors x = y donc y = x et I'on a
bien yR1x.

e Antisymétrique. On suppose que xR1y et yRix alors x =y et y = x
donc on a bien x = y.
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i) La relation R, d'inégalité sur R. Prenons (x, y, z) € R3. Cette relation
est :

e Réflexive. On a bien xRox car x < x.

e Transitive. On suppose que xRoy et yRoz, c'est-a-dire que x < y et
y < z. On en déduit que x < z donc xRsz.

e Non symétrique. Si xRyy alors x < y et cela n'implique pas
nécessairement y < x.

e Antisymétrique. On suppose que xRy et yRox alors x < y et y < x
donc on a bien x = y.
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Chapitre 13 I

iii) La relation R3 d'inégalité sur les fonctions de R dans R est également
réflexive, transitive et antisymétrique mais n'est pas symétrique.
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Chapitre 13 I

iv) La relation R4 de divisibilité sur Z. Prenons (a, b, ¢) € Z3. Cette
relation est :

e Réflexive. On a bien aR4a car ala.

e Transitive. On suppose que aR4b et bR4c, c'est-a-dire que a|b et b|c.
On en déduit que alc donc aR4c.

e Non symétrique. Si aR4b alors a|b et cela n'implique pas
nécessairement b|a.

e Non antisymétrique. On suppose que aR4b et bR4a alors a|b et b|a
cela n'implique pas nécessairement a = b mais a = +b. Ce qui permet de
trouver un contre-exemple, on a : 3| — 3 et —3|3 mais 3 # —3.

La relation de divisibilité sur N est antisymétrique.
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Remarque. Il existe des relations binaires qui ne sont pas réflexives
comme l'inégalité stricte sur R.

Il est également possible de trouver des relations binaires non transitives

par exemple, sur R : #. En effet, on a par exemple : 2 £ 3 et 3 #£2
pourtant 2 # 2 est faux.
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Définition
Soit R une relation binaire sur un ensemble E.

e On dit que deux éléments de E, x et y, sont comparables si et
seulement si xRy ou yRx.

e On dit que la relation binaire R est totale si et seulement si deux
éléments quelconques de E sont comparables. C'est-a-dire :

V(x,y) € E?, xRy ou yRx

e Une relation binaire qui n'est pas totale est dite partielle.
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Exemples. On reprend les mémes exemples que précédemment.

i) La relation d'égalité sur un ensemble E n’est pas totale en général car si
(x,y) € E?, on a pas toujours x = y ou y = x (sauf si E est vide ou n'a
qu'un élément).

ii) La relation < sur R est totale car deux réels x et y sont toujours
comparables pour cette relation puisque I'on a forcément x < y ou y < x.

iii) La relation d'inégalité sur les fonctions de R dans R n'est pas totale, il
est possible de trouver deux fonctions non comparables. Par exemple cos
et sin. En effet, on a n'a pas :

cosR3sin @ Vx € R, cos(x) < sin(x)
sinRzcos : Vx € R, sin(x) < cos(x)

iv) La relation de divisibilité sur Z n'est pas totale. Par exemple 3 et 7 ne
sont pas comparables puisque 3|7 et 7|3 sont faux.
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II-Relations d’équivalences

Définition

Soit R une relation binaire sur un ensemble E. On dit que R est une
relation d’équivalence sur E si et seulement si elle est réflexive, transitive
et symétrique.

On note parfois ~ au lieu de R une relation d’équivalence.
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Exemples.
i) Parmi les exemples précédents seule la relation d'égalité sur un ensemble
E est une relation d'équivalence.

i) Sur E = R*, on définit la relation binaire suivante :
V(x,y) € (R*)?, x ~ y < x et y ont le méme signe

C'est une relation d'équivalence.

iii) Soit n € N, on définit la relation de congruence modulo n sur Z ainsi :
V(a,b) €Z? a~b < a=b[n

Nous avons démontré dans le chapitre 12 que c’est une relation
d’'équivalence.
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Définition
Soit ~ une relation d’équivalence sur un ensemble E. Pour tout x € E, on
définit la classe d’équivalence de x par :

Clx)={y€E, x~y}

La classe de x est donc I'ensemble des éléments de E qui sont en relation
avec Xx.
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Exemple. Prenons la relation de congruence modulo 4 et déterminons la
classe de 3. On proceéde par équivalences, pour b € Z :

beCl(3) & 3~0b
& b=3[4]
& dkeZ, b=3+4k
Finalement :
ClI(3) ={3+ 4k, keZ}

On dit que 3 est un représentant de sa classe. Il y a d’autres
représentants de cette classe 7, 11, —1, —5...et finalement tous les entiers
congrus a 3 modulo 4.

Pour cette relation d'équivalence, nous avons 4 classes d'équivalence.
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Exemple. On se place dans I'ensemble E des MPSI2 et on considére la
relation d'équivalence : "étre né le méme mois".

Donnons différentes classes :

Cl(Noa) = {Noa, Nina, Dorian, Pierrick D., Ayelo, Alix, Francois}
Cl(Daria) = {Daria}

CI(Ayelo) = Cl(Noa)
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Théoreme

Soit ~ une relation binaire sur un ensemble E, les classes d'équivalences
forment une partition de E.

C'est-a-dire qu'elles sont :

e non vides

e |leur union donne E

e elles sont disjointes ou égales.
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Preuve.

e Soit x € E, la classe de x est non vide car on a x € Cl(x) puisque x ~ x
par réflexivité d'une relation d’équivalence.

e Montrons que E = U Cl(x) par double inclusion.
x€E
Soit y € E, on a y € Cl(y) par réflexivité donc y € U Cl(x).
x€E
L'autre l'inclusion est immédiate puisque par définition, pour tout x € E,
ona Cl(x) C E.
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e Montrons enfin que les classes sont disjointes ou égales. Prenons
(x,y) € E?, on suppose que Cl(x) N Cl(y) # (). Montrons que
Cl(x) = Cl(y).

Il existe t € CI(x) N Cl(y). Ona t € Cl(x) donc x ~ t et t € Cl(y) donc
y ~ t. Par symétrie, on a aussi t ~ y. Par transitivité, x ~ tett ~ y
impliquent x ~ y.

Montrons a présent que Cl/(x) = CI(y) par double inclusion. Soit

z € Cl(x), on a x ~ z ou encore par symétrie z ~ x. Or x ~ y donc par
transitivité z ~ y, c'est-a-dire z € Cl(y). D'ou I'inclusion Cl(x) C Cl(y).
L'autre inclusion se démontre de la méme facon.

Les classes d'équivalence forment une partition de E.
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’ Ill-Relations d'ordre I

Définition
Soit R une relation binaire sur un ensemble E. On dit que R est une

relation d’ordre sur E si et seulement si elle est réflexive, transitive et
antisymétrique.

On note parfois < au lieu de R une relation d’ordre.

Un ensemble E muni d'une relation d'ordre < est appelé un ensemble
ordonné. On le note (E, <).
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Exemples. On a les exemples classiques suivants :
i) L'inégalité usuelle sur R.

ii) L'inégalité sur les fonctions de R dans R.

iii) La relation de divisibilité sur N.

iv) Soit E un ensemble I'inclusion est une relation d'ordre sur P(E). En
effet, pour (A, B, C) € P(E)? :

o Réflexivité. A C A.

e Transitivité. si AC Bet BC Calors AC C.

e Antisymétrie. si AC Bet BC Aalors A= B.
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Soit (E, <) un ensemble ordonné et A une partie de E.

e On dit que A est majorée s'il existe M € E tel que :

VaeA a< M

e On dit que A est minorée s'il existe m € E tel que :

VaeA m<a

e A est bornée si et seulement si elle est majorée et minorée.
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Exemples.
i) Dans R avec I'inégalité usuelle, on a tous les exemples vus dans le
chapitre 9.

i) Dans N muni de la relation de divisibilité, prenons A = {8,10,12}. La
partie A est minorée par 2 puisque pour tout a € A, 2|a. Elle est majorée
par 120 car pour tout a € A, a|120. Elle est aussi majorée par 0 car pour
tout a € A, al0.

iii) Dans (P(E), C), toute partie F de P(E) est minorée par () et majorée
par E car :

VAc F, 0 CAet ACE
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Définition

Soit (E, <) un ensemble ordonné et A une partie de E.

e On dit que M € E est un maximum de A ou plus grand élément de A si
et seulement si :

M est un majorant de Aet M € A

e On dit que m € E est un minimum de A ou plus petit élément de A si et
seulement si :

m est un minorant de Aet me A
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Proposition
Soit (E, <) un ensemble ordonné et A une partie de E. Si A posséde un
maximum, celui-ci est unique.

Si A posséde un minimum, celui-ci est unique.
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Preuve.

Soient M et M’ deux maximums de la partie A. On a :

e M maximum de A et M’ € A donc M’ < M.

o M’ maximum de Aet M € Adonc M < M.

Par antisymétrie, on a M’ < M et M < M’ qui implique M = M'.

D’ou 'unicité du maximum.
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Exemple.

On se place dans N muni de la relation de divisibilité.
e Prenons A = {3,7}. Cette partie ne posséde ni maximum ni minimum.

e Prenons A ={2,3,6}. La partie A ne posseéde pas de minimum, par
contre 6 est le maximum de A car 2|6, 3|6 et 6/6.

e Prenons A = N. La partie A possede 1 pour minimum car pour tout
a €N, 1|a. Elle possede 0 comme maximum car pour tout a € N, a|0.
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Définition

Soit (E, <) un ensemble ordonné et A une partie de E.

e Sous réserve d’existence, la borne supérieure de A est le plus petit
majorant de E.

e Sous réserve d'existence, la borne inférieure de A est le plus grand
minorant de E.
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Exemple.

On se place dans N muni de la relation de divisibilité.

Prenons A = {6, 8}. Cette partie posséde de nombreux majorants 24, 48,
720...le plus petit majorant au sens de la relation de divisibilité est 24.
Cette borne supérieure est bien le ppcm de 6 et 8.

De méme 2 est la borne inférieure de A et cela correspond au pgcd.
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Exercices : 3-4-5-7 (indications sur le site)
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