
Chapitre 13

Relations binaires
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Chapitre 13 I

I-Vocabulaire

Définition
On appelle relation binaire sur un ensemble E la donnée d’une partie R
de E 2. Au lieu de noter (x , y) ∈ R, on notera : xRy (ce qui se lit x est en
relation avec y).
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Chapitre 13 I

Exemple. On considère E = {a, b, c, d} et on choisit la relation binaire
suivante :

R = {(a, a), (a, b), (b, a), (b, d), (c, d)}

On écrira donc dans ce cas :

aRa, aRb, bRa, bRd , cRd
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Chapitre 13 I

Exemples.
i) Soit E un ensemble, on définit la relation R1 par :

∀(x , y) ∈ E 2, xR1y ⇔ x = y

ii) Avec E = R, on définit la relation R2 par :

∀(x , y) ∈ R2, xR2y ⇔ x ≤ y

iii) Avec E = F(R,R), on définit la relation R3 par :

∀(f , g) ∈ F(R,R)2, fR3g ⇔ ∀x ∈ R, f (x) ≤ g(x)

iv) Avec E = Z, on définit la relation R4 par :

∀(a, b) ∈ Z2, aR4b ⇔ a|b
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Chapitre 13 I

Définition
Soit R une relation binaire sur un ensemble E .
i) On dit que R est réflexive si et seulement si :

∀x ∈ E , xRx

ii) On dit que R est transitive si et seulement si :
∀(x , y , z) ∈ E 3, xRy et yRz ⇒ xRz

iii) On dit que R est symétrique si et seulement si :
∀(x , y) ∈ E 2, xRy ⇒ yRx

iv) On dit que R est antisymétrique si et seulement si :
∀(x , y) ∈ E 2, xRy et yRx ⇒ x = y
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Chapitre 13 I

Exemples. On reprend les mêmes exemples que précédemment.
i) La relation R1 d’égalité sur un ensemble E . Prenons (x , y , z) ∈ E 3.
Cette relation est :

• Réflexive. On a bien xR1x car x = x .

• Transitive. On suppose que xR1y et yR1z , c’est-à-dire que x = y et
y = z . On en déduit que x = z donc xR1z .

• Symétrique. On suppose que xR1y alors x = y donc y = x et l’on a
bien yR1x .

• Antisymétrique. On suppose que xR1y et yR1x alors x = y et y = x
donc on a bien x = y .
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Chapitre 13 I

ii) La relation R2 d’inégalité sur R. Prenons (x , y , z) ∈ R3. Cette relation
est :

• Réflexive. On a bien xR2x car x ≤ x .

• Transitive. On suppose que xR2y et yR2z , c’est-à-dire que x ≤ y et
y ≤ z . On en déduit que x ≤ z donc xR2z .

• Non symétrique. Si xR2y alors x ≤ y et cela n’implique pas
nécessairement y ≤ x .

• Antisymétrique. On suppose que xR2y et yR2x alors x ≤ y et y ≤ x
donc on a bien x = y .
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Chapitre 13 I

iii) La relation R3 d’inégalité sur les fonctions de R dans R est également
réflexive, transitive et antisymétrique mais n’est pas symétrique.
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Chapitre 13 I

iv) La relation R4 de divisibilité sur Z. Prenons (a, b, c) ∈ Z3. Cette
relation est :

• Réflexive. On a bien aR4a car a|a.

• Transitive. On suppose que aR4b et bR4c, c’est-à-dire que a|b et b|c.
On en déduit que a|c donc aR4c.

• Non symétrique. Si aR4b alors a|b et cela n’implique pas
nécessairement b|a.

• Non antisymétrique. On suppose que aR4b et bR4a alors a|b et b|a
cela n’implique pas nécessairement a = b mais a = ±b. Ce qui permet de
trouver un contre-exemple, on a : 3| − 3 et −3|3 mais 3 6= −3.

La relation de divisibilité sur N est antisymétrique.
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Chapitre 13 I

Remarque. Il existe des relations binaires qui ne sont pas réflexives
comme l’inégalité stricte sur R.

Il est également possible de trouver des relations binaires non transitives
par exemple, sur R : 6=. En effet, on a par exemple : 2 6= 3 et 3 6= 2
pourtant 2 6= 2 est faux.
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Chapitre 13 I

Définition
Soit R une relation binaire sur un ensemble E .

• On dit que deux éléments de E , x et y , sont comparables si et
seulement si xRy ou yRx .

• On dit que la relation binaire R est totale si et seulement si deux
éléments quelconques de E sont comparables. C’est-à-dire :

∀(x , y) ∈ E 2, xRy ou yRx

• Une relation binaire qui n’est pas totale est dite partielle.
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Chapitre 13 I

Exemples. On reprend les mêmes exemples que précédemment.
i) La relation d’égalité sur un ensemble E n’est pas totale en général car si
(x , y) ∈ E 2, on a pas toujours x = y ou y = x (sauf si E est vide ou n’a
qu’un élément).

ii) La relation ≤ sur R est totale car deux réels x et y sont toujours
comparables pour cette relation puisque l’on a forcément x ≤ y ou y ≤ x .

iii) La relation d’inégalité sur les fonctions de R dans R n’est pas totale, il
est possible de trouver deux fonctions non comparables. Par exemple cos
et sin. En effet, on a n’a pas :

cosR3 sin : ∀x ∈ R, cos(x) ≤ sin(x)

sinR3 cos : ∀x ∈ R, sin(x) ≤ cos(x)

iv) La relation de divisibilité sur Z n’est pas totale. Par exemple 3 et 7 ne
sont pas comparables puisque 3|7 et 7|3 sont faux.
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Chapitre 13 II

II-Relations d’équivalences

Définition
Soit R une relation binaire sur un ensemble E . On dit que R est une
relation d’équivalence sur E si et seulement si elle est réflexive, transitive
et symétrique.

On note parfois ∼ au lieu de R une relation d’équivalence.
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Chapitre 13 II

Exemples.
i) Parmi les exemples précédents seule la relation d’égalité sur un ensemble
E est une relation d’équivalence.

ii) Sur E = R∗, on définit la relation binaire suivante :

∀(x , y) ∈ (R∗)2, x ∼ y ⇔ x et y ont le même signe

C’est une relation d’équivalence.

iii) Soit n ∈ N, on définit la relation de congruence modulo n sur Z ainsi :

∀(a, b) ∈ Z2, a ∼ b ⇔ a = b [n]

Nous avons démontré dans le chapitre 12 que c’est une relation
d’équivalence.
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Chapitre 13 II

Définition
Soit ∼ une relation d’équivalence sur un ensemble E . Pour tout x ∈ E , on
définit la classe d’équivalence de x par :

Cl(x) = {y ∈ E , x ∼ y}

La classe de x est donc l’ensemble des éléments de E qui sont en relation
avec x .
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Chapitre 13 II

Exemple. Prenons la relation de congruence modulo 4 et déterminons la
classe de 3. On procède par équivalences, pour b ∈ Z :

b ∈ Cl(3) ⇔ 3 ∼ b
⇔ b = 3 [4]
⇔ ∃k ∈ Z, b = 3 + 4k

Finalement :
Cl(3) = {3 + 4k, k ∈ Z}

On dit que 3 est un représentant de sa classe. Il y a d’autres
représentants de cette classe 7, 11, −1, −5...et finalement tous les entiers
congrus à 3 modulo 4.

Pour cette relation d’équivalence, nous avons 4 classes d’équivalence.
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Chapitre 13 II

Exemple. On se place dans l’ensemble E des MPSI2 et on considère la
relation d’équivalence : "être né le même mois".

Donnons différentes classes :

Cl(Noa) = {Noa, Nina, Dorian, Pierrick D., Ayelo, Alix , François}

Cl(Daria) = {Daria}

Cl(Ayelo) = Cl(Noa)
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Chapitre 13 II

Théorème
Soit ∼ une relation binaire sur un ensemble E , les classes d’équivalences
forment une partition de E .
C’est-à-dire qu’elles sont :
• non vides
• leur union donne E
• elles sont disjointes ou égales.
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Chapitre 13 II

Preuve.
• Soit x ∈ E , la classe de x est non vide car on a x ∈ Cl(x) puisque x ∼ x
par réflexivité d’une relation d’équivalence.

• Montrons que E =
⋃

x∈E
Cl(x) par double inclusion.

Soit y ∈ E , on a y ∈ Cl(y) par réflexivité donc y ∈
⋃

x∈E
Cl(x).

L’autre l’inclusion est immédiate puisque par définition, pour tout x ∈ E ,
on a Cl(x) ⊂ E .
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Chapitre 13 II

• Montrons enfin que les classes sont disjointes ou égales. Prenons
(x , y) ∈ E 2, on suppose que Cl(x) ∩ Cl(y) 6= ∅. Montrons que
Cl(x) = Cl(y).

Il existe t ∈ Cl(x) ∩ Cl(y). On a t ∈ Cl(x) donc x ∼ t et t ∈ Cl(y) donc
y ∼ t. Par symétrie, on a aussi t ∼ y . Par transitivité, x ∼ t et t ∼ y
impliquent x ∼ y .

Montrons à présent que Cl(x) = Cl(y) par double inclusion. Soit
z ∈ Cl(x), on a x ∼ z ou encore par symétrie z ∼ x . Or x ∼ y donc par
transitivité z ∼ y , c’est-à-dire z ∈ Cl(y). D’où l’inclusion Cl(x) ⊂ Cl(y).
L’autre inclusion se démontre de la même façon.

Les classes d’équivalence forment une partition de E .
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Chapitre 13 III

III-Relations d’ordre

Définition
Soit R une relation binaire sur un ensemble E . On dit que R est une
relation d’ordre sur E si et seulement si elle est réflexive, transitive et
antisymétrique.

On note parfois ≤ au lieu de R une relation d’ordre.

Un ensemble E muni d’une relation d’ordre ≤ est appelé un ensemble
ordonné. On le note (E ,≤).
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Chapitre 13 III

Exemples. On a les exemples classiques suivants :
i) L’inégalité usuelle sur R.

ii) L’inégalité sur les fonctions de R dans R.

iii) La relation de divisibilité sur N.

iv) Soit E un ensemble l’inclusion est une relation d’ordre sur P(E ). En
effet, pour (A, B, C) ∈ P(E )3 :
• Réflexivité. A ⊂ A.
• Transitivité. si A ⊂ B et B ⊂ C alors A ⊂ C .
• Antisymétrie. si A ⊂ B et B ⊂ A alors A = B.
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Chapitre 13 III

Définition
Soit (E ,≤) un ensemble ordonné et A une partie de E .
• On dit que A est majorée s’il existe M ∈ E tel que :

∀a ∈ A, a ≤ M

• On dit que A est minorée s’il existe m ∈ E tel que :

∀a ∈ A, m ≤ a

• A est bornée si et seulement si elle est majorée et minorée.
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Chapitre 13 III

Exemples.
i) Dans R avec l’inégalité usuelle, on a tous les exemples vus dans le
chapitre 9.

ii) Dans N muni de la relation de divisibilité, prenons A = {8, 10, 12}. La
partie A est minorée par 2 puisque pour tout a ∈ A, 2|a. Elle est majorée
par 120 car pour tout a ∈ A, a|120. Elle est aussi majorée par 0 car pour
tout a ∈ A, a|0.

iii) Dans (P(E ),⊂), toute partie F de P(E ) est minorée par ∅ et majorée
par E car :

∀A ∈ F , ∅ ⊂ A et A ⊂ E
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Chapitre 13 III

Définition
Soit (E ,≤) un ensemble ordonné et A une partie de E .
• On dit que M ∈ E est un maximum de A ou plus grand élément de A si
et seulement si :

M est un majorant de A et M ∈ A

• On dit que m ∈ E est un minimum de A ou plus petit élément de A si et
seulement si :

m est un minorant de A et m ∈ A
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Chapitre 13 III

Proposition
Soit (E ,≤) un ensemble ordonné et A une partie de E . Si A possède un
maximum, celui-ci est unique.

Si A possède un minimum, celui-ci est unique.

26 / 1



Chapitre 13 III

Preuve.
Soient M et M ′ deux maximums de la partie A. On a :
• M maximum de A et M ′ ∈ A donc M ′ ≤ M.
• M ′ maximum de A et M ∈ A donc M ≤ M ′.
Par antisymétrie, on a M ′ ≤ M et M ≤ M ′ qui implique M = M ′.
D’où l’unicité du maximum.
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Chapitre 13 III

Exemple.
On se place dans N muni de la relation de divisibilité.

• Prenons A = {3, 7}. Cette partie ne possède ni maximum ni minimum.

• Prenons A = {2, 3, 6}. La partie A ne possède pas de minimum, par
contre 6 est le maximum de A car 2|6, 3|6 et 6|6.

• Prenons A = N. La partie A possède 1 pour minimum car pour tout
a ∈ N, 1|a. Elle possède 0 comme maximum car pour tout a ∈ N, a|0.
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Chapitre 13 III

Définition
Soit (E ,≤) un ensemble ordonné et A une partie de E .
• Sous réserve d’existence, la borne supérieure de A est le plus petit
majorant de E .
• Sous réserve d’existence, la borne inférieure de A est le plus grand
minorant de E .
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Chapitre 13 III

Exemple.
On se place dans N muni de la relation de divisibilité.

Prenons A = {6, 8}. Cette partie possède de nombreux majorants 24, 48,
720...le plus petit majorant au sens de la relation de divisibilité est 24.
Cette borne supérieure est bien le ppcm de 6 et 8.

De même 2 est la borne inférieure de A et cela correspond au pgcd.
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Chapitre 13

Exercices : 3-4-5-7 (indications sur le site)
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