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Exercice : L’anneau Z[j]
1. (a) On sait que 1, j et j2 sont les trois racines cubiques de l’unité. Or dès que n ≥ 2, la somme des racines

n-ièmes de l’unité vaut 0.

1 + j + j2 = 0

On a :
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2iπ
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(b) L’existence d’une telle écriture est donnée par la définition de Z[j], il reste à démontrer l’unicité. On
suppose que :

z = a+ bj = c+ dj avec (a, b, c, d) ∈ Z4

En utilisant l’écriture algébrique de j donnée dans la question précédente, il vient :

a− 1

2
b+

√
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2
ib = c− 1

2
d+

√
3

2
id

On identifie les parties imaginaires pour obtenir : b = d puis on identifie les parties réelles pour avoir a = c.
Ce qui démontre l’unicité de l’écriture.

L’écriture d’un élément de Z[j] est unique

2. Nous allons démontrer que (Z[j],+,×) est un anneau en démontrant plutôt que c’est un sous-anneau de
(C,+,×). Vérifions les différentes conditions requises.

• Déjà Z[j] ⊂ C.

• 0 ∈ Z[j] car 0 = 0 + 0i.

• Soient z = a+ bj et z′ = c+ dj avec (a, b, c, d) ∈ Z4. On a :

z + z′ = a+ bj + c+ dj = (a+ c)︸ ︷︷ ︸
∈Z

+ (b+ d)︸ ︷︷ ︸
∈Z

j

donc z + z′ ∈ Z[j].

• Soit z = a+ bj avec (a, b) ∈ Z2, on a :

−z = −(a+ bj) = −a︸︷︷︸
∈Z

+ (−b)︸︷︷︸
∈Z

j

donc −z ∈ Z[j].

• 1 = 1 + 0j ∈ Z[j].

• Soient z = a + bj et z′ = c + dj avec (a, b, c, d) ∈ Z4. En utilisant la relation 1 + j + j2 = 0, c’est-à-dire
j2 = −j − 1, on a :

z × z′ = (a+ bj)× (c+ dj) = ac+ (ad+ bc)j + bdj2 = ac+ (ad+ bc)j + bd(−1− j) = ac− bd︸ ︷︷ ︸
∈Z

+ (ad+ bc− bd)︸ ︷︷ ︸
∈Z

j

donc z × z′ ∈ Z[j].

Enfin la mutiplication des nombres complexes est évidemment commutative, on en déduit que :

(Z[j],+,×) est un anneau commutatif en tant que sous-anneau de (C,+,×)
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3. (a) Soit z = a+ bj avec (a, b) ∈ Z2. On a :

N(z) = |z|2 = zz̄ = (a+ bj)(a+ bj̄) = a2 + 2ab(j + j̄) + b2jj̄ = a2 − ab+ b2 ∈ Z

car j+ j̄ = j+ j2 = −1 et jj̄ = j× j2 = j3 = 1. Or le module d’un nombre complexe est un nombre positif
donc :

N(z) ∈ N

(b) On procède par double implication.

(⇒) On suppose que z est un inversible de Z[j], cela signifie qu’il existe z′ ∈ Z[j] tel que zz′ = 1. On note
z = a+ bj et z′ = c+ dj avec (a, b, c, d) ∈ Z4, on a :

N(zz′) = |zz′|2 = |z|2|z′|2 = N(z)N(z′)

Ainsi N(z)N(z′) = N(zz′) = N(1) = |1|2 = 1. Or N(z) et N(z′) sont deux entiers naturels d’après la
question précédente donc N(z) = 1.

(⇐) Réciproquement, on suppose que N(z) = 1, on a :

N(z) = |z2| = zz̄ = (a+ bj)(a+ bj̄) = (a+ bj)(a+ bj2) = (a+ bj)(a− b− bj) = 1

Ainsi z est inversible et son inverse est a− b︸ ︷︷ ︸
∈Z

+ (−b)︸︷︷︸
∈Z

j.

z est inversible si et seulement si N(z) = 1

(c) D’après la question (b), chercher les inversibles de Z[j] revient à déterminer les éléments de module 1. Soit
z = a+ bj avec (a, b) ∈ Z2. En utilisant le calcul de la question (a), on a :

N(z) = 1⇔ a2 − ab+ b2 = 1⇔ a2 − ab+ b2 − 1 = 0

On fixe b ∈ Z, on obtient alors une équation de degré 2 en a. Le discriminant vaut ∆ = b2−4(b2−1) = 4−3b2.
Plusieurs cas sont à considérer :

• Si |b| ≥ 2, l’équation n’a pas de solution réelle car le discriminant est négatif.

• Si |b| = 1 alors si b = 1 l’équation a pour solution a = 0 et a = 1 et si b = −1 l’équation a pour solution
a = −1 et a = 0. Ce qui nous donne les inversibles : j, −j, −1− j et 1 + j.

• Si |b| = 0, c’est-à-dire b = 0, on a : a = 1 et a = −1. Ce qui nous donne les inversibles 1 et −1.

Z[j]× = {1,−1, j,−j, 1 + j,−1− j}

Donnons les inverses :
1× 1 = 1

(−1)× (−1) = 1

j × (−1− j) = j × j2 = j3 = 1

−j × (1 + j) = 1

(d) L’anneau Z[j] n’est pas un corps car tous les éléments non nuls ne sont pas inversibles comme nous l’avons
vu dans la question précédente.
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Exercice 2 : Triplets pythagoriciens
1. Soit d ∈ N∗ un diviseur commun de x, y et z, il existe (X,Y, Z) ∈ (N∗)3 tels que x = dX, y = dY et z = dZ.

On a :
x2 + y2 = z2 ⇔ (dX)2 + (dY )2 = (dZ)2 ⇔ X2 + Y 2 = Z2

Il suffit de chercher les solutions sans diviseur commun, on obtiendra toutes les solutions en multipliant par un
entier quelconque les trois coordonnées du triplet.

2. Soit d ∈ N∗ un nombre premier tel que d|x et d|y alors d|x2 + y2 = z2. Comme d divise z2 alors d apparait
dans la décomposition en facteurs premiers de z2 donc il apparait dans la décomposition en facteurs premiers
de z. En effet, les facteurs premiers de z et z2 sont les mêmes, seules les valuations changent, ceci étant dû
à l’unicité de la décomposition en facteurs premiers. Finalement d divise z. D’après l’hypothèse, un diviseur
positif de x, y et z est égal à 1. On vient de démontrer que x et y n’ont pas de facteur premier en commun,
d’après le cours cela implique qu’ils sont premiers entre eux.

On démontre de la même façon que x ∧ z = y ∧ z = 1.

x ∧ y = x ∧ z = y ∧ z = 1

Il est alors clair que x et y ne sont pas tous les deux pairs sinon ils auraient 2 comme facteur commun, ce qui
est contradictoire avec le résultat précédent.

3. Par l’absurde, si x et y sont impairs alors il existe (k, l) ∈ N2 tels que x = 2k + 1 et y = 2l + 1. On a
x2 = 4k2 + 4k + 1 et y2 = 4l2 + 4l + 1, ainsi x2 ≡ 1[4] et y2 ≡ 1[4] donc z2 ≡ 2[4]. C’est absurde car on vérifie
immédiatement avec une table de congruence qu’un carré est congru à 0 ou 1 modulo 4.

x et y sont de parités distinctes

4. L’entier naturel x est pair et y est impair donc x2 est pair et y2 est impair, ce qui implique que z2 est impair
et par suite z est impair. On en déduit que z + y et z − y sont impairs. D’autre part, étant donné que x, y et z
sont non nuls, on a : x ≥ 1, z + y ≥ 1 et z − y ≥ 1 car z2 = y2 + x2 ≥ y2 + 1. Finalement :

∃(u, v, w) ∈ (N∗)3, x = 2u, z + y = 2v et z − y = 2w

5. Soit d ∈ N∗ tel que d|v et d|w alors d|v + w = z et d|v − w = y. Or y ∧ z = 1 donc d = 1.

v ∧ w = 1

6. On a 4vw = (z + y)(z − y) = z2 − y2 = x2 = 4u2.

vw = u2

On reprend l’égalité précédente en utilisant la décomposition en facteurs premiers :

vw =
( ∏
p∈P

pνp(u)
)2

Soit p ∈ P un nombre premier qui apparait dans la décomposition précédente alors p|vw. Comme v et w sont
premiers entre eux alors p divise v et p ne divise pas w ou p ne divise pas v et p divise w. Dans la décomposition
précédente en regroupant les facteurs premiers selon qu’ils divisent v ou w, on obtient :

v =
( ∏
p∈P, p|v

pνp(u)
)2

et w =
( ∏
p∈P, p|w

pνp(u)
)2

∃(n,m) ∈ N2, v = n2 et w = m2
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7. On a 2v − 2w = 2y > 0 donc v > w d’où n2 > m2 et par suite :

n > m

Si d ∈ N∗ avec d|n et d|m alors d|n2 = v et d|m2 = w, or v ∧ w = 1 d’où d = 1.

n ∧m = 1

On a vu que vw = u2 donc n2m2 = u2 donc u = nm puisque l’on travaille avec des entiers naturels.

u = nm

8. On vient de démontrer que les conditions données dans cette question sont des conditions nécessaires, l’autre
triplet étant obtenu en supposant x impair et y pair. En effet, x = 2u = 2nm, y = v − w = n2 − m2 et
z = w + v = n2 +m2 et m et n sont bien de parités distinctes car y est impair.

Réciproquement, on a bien :

x2 + y2 = (2nm)2 + (n2 −m2)2 = 4n2m2 + n4 − 2n2m2 +m4 = (n2 +m2)2 = z2

et (x, y, z) est un triplet Pythagoricien car si d est un nombre premier tel que d|x, d|y et d|z alors d|2n2 = y+ z
et d|2m2 = z − y. Or d n’est pas pair car y (ou x) est impair puisque n et m sont de parités distinctes. Ainsi
d|m2 et d|n2 donc d|m et d|n, comme m et n sont premiers entre eux cela implique que d = 1. On a bien un
triplet Pythagoricien primitif.

Problème : Une équation fonctionnelle

Partie A : Généralités sur les fonctions de E

1. Soit f une fonction constante de R dans R, il existe a ∈ R tel que pour tout x ∈ R, f(x) = a, on a :

f ∈ E ⇔ ∀(x, y) ∈ R2, f(x) + f(y) = 2f
(x+ y

2

)
f
(x− y

2

)
⇔ 2a = 2a2 ⇔ 2a(a− 1) = 0⇔ a ∈ {0, 1}

E contient deux fonctions constantes, la fonction constante égale à 0 et la fonction constante égale à 1

2. La fonction constante égale à 1 appartient à E mais son opposé, la fonction constante égale à −1, ne vérifie
clairement pas la relation (R).

E n’est pas un sous-groupe additif de F(R,R)

3. Démontrons cela par double implication. Soit f une fonction de R dans R.

(⇒) On suppose que f vérifie (S) et on se donne (x, y) ∈ R2. En appliquant (S) avec u =
x+ y

2
et v =

x− y
2

,
on a :

f(u+ v) + f(u− v) = 2f(u)f(v)⇔ f(x) + f(y) = 2f
(x+ y

2

)
f
(x− y

2

)
Ce qui démontre que f vérifie (R).

(⇐) Réciproquement, on suppose que f vérifie (R) et on se donne (u, v) ∈ R2. En appliquant (R) à x = u+ v
et y = u− v, on a :

f(x) + f(y) = 2f
(x+ y

2

)
f
(x− y

2

)
⇔ f(u+ v) + f(u− v) = 2f(u)f(v)

Ce qui démontre que f vérifie (S).

f vérifie (S) si et seulement si f vérifie (R)
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4. (a) Soit x ∈ R, appliquons (R) au couple (x, x), cela donne :

2f(x) = 2f(x)f(0) (F)

Si f(0) = 0 alors pour tout x ∈ R, f(x) = 0 d’après la relation ci-dessus. Ceci est exclu puisque, d’après
l’hypothèse de l’énoncé, f n’est pas la fonction nulle. Ainsi :

f(0) 6= 0

On utilise ensuite (F) avec x = 0, cela donne 2f(0) = 2f(0)2. Comme f(0) 6= 0 alors f(0) = 1.

f(0) = 1

(b) Soit x ∈ R, on applique la relation (S) au couple (0, x), cela donne :

f(x) + f(−x) = 2f(0)f(x)⇔ f(x) + f(−x) = 2f(x) puisque f(0) = 1

Ce qui démontre que pour tout x ∈ R, f(−x) = f(x).

f est paire

(c) Soit x ∈ R, on applique la relation (R) au couple (x, 0), cela donne :

f(x) + f(0) = 2f
(x

2

)2
⇔ f(x) = 2f

(x
2

)2
− 1

Ce qui démontre que :

∀x ∈ R, f(x) ≥ −1

5. Soit λ un réel. Les fonctions x 7→ ch(λx) et x 7→ cos(λx) sont bien continues sur R. D’après les relations rappelées
en préambule et en utilisant la parité de ch et l’imparité de sh, on a :

∀(x, y) ∈ R2, ch(λx+ λy) = ch(λx) ch(λy) + sh(λx) sh(λy)

∀(x, y) ∈ R2, ch(λx− λy) = ch(λx) ch(λy)− sh(λx) sh(λy)

En sommant ces relations on obtient :

∀(x, y) ∈ R2, ch(λ(x+ y)) + ch(λ(x− y)) = 2 ch(λx) ch(λy)

Ce qui démontre que la fonction x 7→ ch(λx) vérifie (S) et par suite elle appartient à C.
De même pour la fonction x 7→ cos(λx) qui vérifie aussi (S) puisque :

∀(x, y) ∈ R2, cos(λ(x+ y)) + cos(λ(x− y)) = 2 cos(λx) cos(λy)

x 7→ ch(λx) et x 7→ cos(λx) appartiennent à C

6. (a) On fixe u ∈ R. Les fonctions v 7→ u+ v, v 7→ u− v et f sont dérivables deux fois sur R ; par composition,
somme et produit, F est dérivable deux fois sur R. Pour tout v réel, on a :

F ′(v) = f ′(u+ v)− f ′(u− v)− 2f(u)f ′(v)

F ′′(v) = f ′′(u+ v) + f ′′(u− v)− 2f(u)f ′′(v)
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(b) Comme f ∈ E , f vérifie (S) ainsi F est la fonction nulle et F ′′ est également la fonction nulle. C’est-à-dire
que pour tous (u, v) ∈ R2 :

f ′′(u+ v) + f ′′(u− v) = 2f(u)f ′′(v)

En particulier pour v = 0, cela donne pour tout u ∈ R : f ′′(u) = f ′′(0)f(u). On a le résultat voulu avec :

k = f ′′(0)

(c) Comme f appartient à E , on a vu à la question 4.(a) que f(0) = 1 d’où la première condition. De plus, on
sait que f est une fonction paire, ainsi f ′ est impaire et f ′(0) = 0. Grâce à la question précédente, on en
déduit que f est solution de : {

y′′ = ky
y(0) = 1, y′(0) = 0

(d) Raisonnons selon le signe de k :

I Si k = 0, les solutions de l’équation différentielle précédente sont les fonctions définies sur R par

y : x 7→ Ax + B où (A,B) ∈ R2. Les conditions initiales imposent A = 0 et B = 1. On trouve comme
solution la fonction constante égale à 1. On remarque que l’on a bien y′′(0) = 0 = k.

I Si k > 0. L’équation caractéristique s’écrit x2−k = 0 qui possède deux solutions réelles :
√
k et −

√
k. Les

solutions de l’équation différentielle précédente sont les fonctions définies sur R par y : x 7→ Ae
√
kx+Be−

√
kx

où (A,B) ∈ R2. Tenons compte des conditions initiales :

{
y(0) = 1
y′(0) = 0

⇔
{
A+B = 1

A
√
k −B

√
k = 0

⇔
{
B = 1−A
A
√
k + (A− 1)

√
k = 0

⇔


B =

1

2

A =
1

2

Ainsi les solutions de l’équation différentielle précédente sont les fonctions y : x 7→ ch(
√
kx). On a bien

y′′(0) = k.

I Si k < 0. L’équation caractéristique s’écrit x2 − k = 0 qui possède deux solutions complexes : i
√
−k et

−i
√
−k. Les solutions de l’équation différentielle précédente sont les fonctions définies sur R par

y : x 7→ A cos(
√
−kx) +B sin(−

√
−kx) où (A,B) ∈ R2. Tenons compte des conditions initiales :{
y(0) = 1
y′(0) = 0

⇔
{
A = 1

−B
√
−k = 0

⇔
{
A = 1
B = 0

Ainsi les solutions de l’équation différentielle précédente sont les fonctions y : x 7→ cos(
√
−kx). On a bien

y′′(0) = k.

Réciproquement les fonctions x 7→ ch(λx) et x 7→ cos(λx) appartiennent à E pour tout λ ∈ R, d’après la
question 5. Les fonctions dérivables deux fois et appartenant à E sont les fonctions définies sur R par :

x 7→ 0, x 7→ ch(λx), x 7→ cos(λx) où λ ∈ R

On n’a pas oublié d’ajouter la fonction nulle qui est bien dérivable deux fois et qui appartient à E .

La suite du problème va permettre de démontrer que les fonctions trouvées sont exactement les éléments de l’en-
semble C.
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Partie B : Etude de l’ensemble C

1. (a) Soit k ∈ N∗, on applique la relation (S) au couple (ka, a) cela donne :

f(ka+ a) + f(ka− a) = 2f(ka)f(a)⇔ uk+1 + uk−1 = 2uku1

∀k ∈ N∗, uk+1 + uk−1 = 2u1uk

(b) On peut choisir α = Arccos(u1) puisque u1 ∈ [−1, 1], ainsi cos(α) = cos(Arccos(u1)) = u1.

Démontrons-le par récurrence double, pour k ≥ 0 on considère l’hypothèse :

Hk : uk = cos(kα)

I Pour k = 0, on a u0 = f(0) = 1 d’après la question 4.(a) de la partie A. Ce qui démontre que
u0 = cos(0× α) et par suite H0 est vraie.

I Pour k = 1, on a u1 = cos(α) par définition de α, H1 est vraie.

I Fixons k ∈ N, on suppose que Hk et Hk+1 sont vraies. D’après la relation démontrée à la question 1.(a),
on a :

uk+2 + uk = 2u1uk+1 ⇔ uk+2 = 2 cos(α) cos((k + 1)α)− cos(kα)

Or pour tous (b, c) ∈ R2, on a : cos(b+ c) + cos(b− c) = 2 cos(b) cos(c), si l’on applique cette formule avec
b = (k + 1)α et c = α cela donne :

cos((k + 2)α) + cos(kα) = 2 cos((k + 1)α) cos(α)⇔ cos((k + 2)α) = 2 cos((k + 1)α) cos(α)− cos(kα)

Ce qui démontre que uk+2 = cos((k + 2)α) et par suite Hk+2 est vraie. Ce qui achève la récurrence.

∀k ∈ N, uk = cos(kα)

(c) Si u1 /∈ [−1, 1] alors u1 ∈ R \ [−1, 1] mais d’après la question 4.(c) de la partie A, on a f qui est minorée
par −1. Ainsi le cas où u1 = f(a) < −1 est à exclure. On a : u1 > 1.

D’après le cours, la fonction ch est strictement croissante de ]0,+∞[ dans ]1,+∞[ et continue, de plus
lim
x→0

ch(x) = ch(0) = 1 et lim
x→+∞

ch(x) = +∞. D’après le théorème de la bijection, ch induit une bijection

de ]0,+∞[ dans ]1,+∞[. Comme nous l’avons vu u1 > 1 donc u1 admet un antécédent par ch : ∃β ∈ R∗+
tel que u1 = ch(β).

Démontrons-le par récurrence double, pour k ≥ 0 on considère l’hypothèse :

Hk : uk = ch(kβ)

I Pour k = 0, on a u0 = f(0) = 1 d’après la question 4.(a) de la partie A. Ce qui démontre que
u0 = ch(0× β) et par suite H0 est vraie.

I Pour k = 1, on a u1 = ch(β) par définition de β, H1 est vraie.

I Fixons k ∈ N, on suppose que Hk et Hk+1 sont vraies. D’après la relation démontrée à la question 1.(a),
on a :

uk+2 + uk = 2u1uk+1 ⇔ uk+2 = 2 ch(α) ch((k + 1)α)− ch(kα)

Or pour tous (b, c) ∈ R2, on a : ch(b + c) + ch(b − c) = 2 ch(b) ch(c) comme nous l’avons démontré à la
question 5. de la partie A. Si l’on applique cette formule avec b = (k + 1)β et c = β cela donne :

ch((k + 2)β) + ch(kβ) = 2 ch((k + 1)β) ch(β)⇔ ch((k + 2)β) = 2 ch((k + 1)β) ch(β)− ch(kβ)

Ce qui démontre que uk+2 = ch((k + 2)β) et par suite Hk+2 est vraie. Ce qui achève la récurrence.

∀k ∈ N, uk = ch(kβ)
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2. (a) D’après la question 4.(a) de la partie A. On sait que f(0) = 1 et dans cette partie f est continue sur R, en
particulier elle est continue en 0, c’est-à-dire que :

∀ε > 0, ∃b > 0, |x− 0| ≤ b⇒ |f(x)− f(0)| ≤ ε

En prenant ε =
1

2
, il existe b > 0 tel que :

|x| ≤ b⇒ |f(x)− 1| ≤ 1

2

Ce qui est équivalent à dire que :

∀x ∈ [−b, b], f(x) ∈
[1

2
,
3

2

]
On a bien démontré que :

∃b > 0, ∀x ∈ [−b, b], f(x) > 0

(b) D’après le théorème de caractérisation séquentielle de la limite, on a :
lim

n→+∞

b

2n
= 0

f et continue en 0

⇒ lim
n→+∞

f
( b

2n

)
= f(0) = 1

lim
n→+∞

vn = 1

(c) Soit n ∈ N, il s’agit d’appliquer la propriété (S) au couple
( b

2n+1
,

b

2n+1

)
, cela donne :

f
( b

2n+1
+

b

2n+1︸ ︷︷ ︸
= b

2n

)
+ f(0) = 2f

( b

2n+1

)2

C’est-à-dire que pour tout n ∈ N, vn+1 = 2v2
n+1. Or pour tout n ∈ N, on a

b

2n
∈ [−b, b] d’après la question

2.(a) cela implique que vn = f
( b

2n

)
> 0. Ainsi la relation vn + 1 = 2v2

n+1 implique que :

∀n ∈ N, vn+1 =

√
1 + vn

2

(d) On choisit γ = Arccos(v0), comme v0 ∈]0, 1], on a γ ∈
[
0,
π

2

[
. On a bien cos(γ) = v0.

Démontrons la propriété demandée par récurrence sur n ∈ N, on pose :

Hn : vn = cos
( γ

2n

)
I Pour n = 0, on a v0 = cos(γ) par définition de γ, H0 est vraie.

I On fixe n ∈ N et l’on suppose que Hn est vraie. On a :

vn+1 =

√
vn + 1

2
=

√√√√cos
(
γ
2n

)
+ 1

2
= cos

(1

2

γ

2n

)
= cos

( γ

2n+1

)
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On a utilisé au passage la formule : cos2(c) =
1 + cos(2c)

2
avec c =

γ

2n+1
∈
[
0,
π

2

[
, intervalle sur lequel la

fonction cosinus est positive.

Ce qui achève la récurrence et démontre que :

∀n ∈ N, vn = cos
( γ

2n

)
(e) On suppose que v0 = f(b) > 1. On justifie l’existence de δ > 0 tel que v0 = ch(δ) avec exactement le même

raisonnement qu’à la question 1.(c). Démontrons par récurrence sur n ∈ N la propriété suivante :

Hn : vn = ch
( δ

2n

)
I Pour n = 0, on a v0 = ch(δ) par définition de δ, H0 est vraie.

I On fixe n ∈ N et l’on suppose que Hn est vraie. On a :

vn+1 =

√
vn + 1

2
=

√√√√ch
(
δ

2n

)
+ 1

2
= ch

(1

2

δ

2n

)
= ch

( δ

2n+1

)
On a utilisé au passage la formule valable pour tout c ∈ R : ch2(c) =

1 + ch(2c)

2
avec c =

δ

2n+1
.

Cette formule de trigonométrie hyperbolique se démontre en revenant à la définition de la fonction ch, pour

tout c ∈ R, ch(c) =
1

2

(
ec + e−c

)
.

Ce qui achève la récurrence et démontre que :

∀n ∈ N, vn = ch
( δ

2n

)

(f) I Si f(b) ∈]0, 1], on a f
( b

2n

)
= cos

( γ
2n

)
d’après la question 2.(d). On pose a =

b

2n
, on a a > 0

et f(a) ∈ [−1, 1] ce qui fait que l’on est dans le cadre de la question 1.(b). On sait alors que pour
tout k ∈ N, on a : f(ka) = cos(kα). En particulier avec k = 1 cela donne f(a) = cos(α), c’est-à-dire

f
( b

2n

)
= cos

( γ
2n

)
= cos(α). Or α et

γ

2n
sont deux éléments de [0, π] et leurs cosinus sont égaux, d’où

α =
γ

2n
.

L’expression soulignée devient :

∀(n, k) ∈ N2, f
(
k
b

2n

)
= cos

(
k
γ

2n

)

I Si f(b) > 1, on a : f
( b

2n

)
= ch

( δ
2n

)
d’après la question 2.(e). On pose a =

b

2n
, on a a > 0 et

f(a) > 1 ce qui fait que l’on est dans le cadre de la question 1.(c). On sait alors que pour tout k ∈ N, on a :

f(ka) = ch(kβ). En particulier avec k = 1 cela donne f(a) = ch(β), c’est-à-dire f
( b

2n

)
= ch

( δ
2n

)
= ch(β).

Or β et
δ

2n
sont strictement positifs et leur cosinus hyperbolique sont égaux, d’où β =

δ

2n
.

L’expression soulignée devient :

∀(n, k) ∈ N2, f
(
k
b

2n

)
= ch

(
k
δ

2n

)
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(g) i. Pour tout x ≥ 0 et n ∈ N, on a l’encadrement usuel sur la fonction partie entière :

2n
x

b
− 1 <

⌊
2n
x

b

⌋
≤ 2n

x

b

On multiplie cet encadrement par
b

2n
qui est strictement positif pour obtenir :

x− b

2n
<

b

2n

⌊
2n
x

b

⌋
≤ x

D’après le théorème d’encadrement, il apparâıt que :

lim
n→+∞

b

2n
pn = x

ii. D’après le résultat de la question précédente et par continuité de f en x ∈ R+, on a :

lim
n→+∞

f
( b

2n
pn

)
= f(x)

iii. Comme dans tout le problème, il y a deux cas à distinguer :

I Si f(b) ∈]0, 1], on peut appliquer la question 2.(f) avec k = pn qui est bien un entier. Cela nous

donne que pour tout n ∈ N, f
( b

2n
pn

)
= cos

(
pn

γ

2n

)
. Or lim

n→+∞
pn

γ

2n
= x

γ

b
. En passant à la limite

dans la relation soulignée grâce à la continuité des fonctions mises en jeu et à la question précédente,
on obtient :

f(x) = cos
(
x
γ

b

)
I Si f(b) > 1, on peut appliquer la question 2.(f) avec k = pn qui est bien un entier. Cela nous

donne que pour tout n ∈ N, f
( b

2n
pn

)
= ch

(
pn

δ

2n

)
. Or lim

n→+∞
pn

δ

2n
= x

δ

b
. En passant à la limite dans

la relation soulignée grâce à la continuité des fonctions mises en jeu et à la question précédente, on
obtient :

f(x) = ch
(
x
δ

b

)
3. Les fonctions appartenant à C sont paires d’après la question 4.(b) de la partie A, ainsi les relations trouvées

précédemment valables sur R+ le sont aussi sur R. Ce qui démontre que si f est une fonction non nulle appar-
tenant à C alors :

f : R → R
x 7→ cos(λx)

ou
f : R → R

x 7→ ch(λx)
avec λ ∈ R

Ceci en posant λ =
γ

b
ou λ =

δ

b
selon que f(b) ∈]0, 1] ou f(b) > 1.

Réciproquement de telles fonctions appartiennent à C d’après la question 5. de la partie A.

En résumé, en tenant compte de la fonction nulle qui appartient bien sûr à C, l’ensemble C est composé des
fonctions définies sur R par :

x 7→ 0, x 7→ cos(λx), x 7→ ch(λx) où λ ∈ R
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Exercice 3 : Arithmétique de la suite de Fibonacci

1. Soit n ∈ N, l’identité de Cassini démontrée dans le DS2 s’écrit : F 2
n+1−FnFn+2 = (−1)n. Soit p ∈ Z, un diviseur

commun de Fn+1 et Fn alors p divise toute combinaison de Fn+1 et Fn. En particulier p divise F 2
n+1−FnFn+2 =

(−1)n. Ce qui démontre que les seuls diviseurs communs de Fn+1 et Fn sont −1 et 1.

∀n ∈ N, Fn+1 et Fn sont premiers entre eux

2. I Démontrons par récurrence double sur p ∈ N :

Hp : ∀n ∈ N∗, Fn+p = Fn−1Fp + FnFp+1

• Initialisation. Pour p = 0, on a F0 = 0 et F1 = 1 ainsi la formule annoncée se résume à : ∀n ∈ N∗, Fn = Fn.
Pour p = 1, on a : F1 = 1 et F2 = 1 ainsi la formule annoncée devient : ∀n ∈ N∗, Fn+1 = Fn−1 +Fn. Ce qui est
vrai par définition de la suite de Fibonacci.

• Hérédité. On suppose Hp et Hp+1 vraies pour un entier naturel p fixé. Soit n ∈ N∗, on a :

Fn+p+2 = Fn+p+1 + Fn+p par définition de la suite de Fibonacci
= (Fn−1Fp+1 + FnFp+2) + (Fn−1Fp + FnFp+1) en utilisant Hp+1 et Hp
= Fn−1(Fp+1 + Fp) + Fn(Fp+2 + Fp+1)
= Fn−1Fp+2 + FnFp+3

Nous avons démontré Hp+2 et cela termine la récurrence.

∀(n, p) ∈ N∗ × N, Fn+p = Fn−1Fp + FnFp+1

I Soit n ∈ N∗ et p ∈ N, nous allons démontrer que les couples (Fp, Fn) et (Fn+p, Fn) ont les mêmes diviseurs
communs ainsi ils auront bien le même pgcd.

• Soit d ∈ Z, si d|Fp et d|Fn alors d|(Fn−1Fp+FnFp+1) = Fn+p (d’après la question précédente). Ce qui démontre

que d|Fn et d|Fn+p.

• Soit d ∈ Z, si d|Fn+p et d|Fn alors d|(Fn+p−FnFp+1) = Fn−1Fp. Or Fn et Fn−1 sont premiers entre eux d’après

la question 1., par hypothèse d|Fn donc d est premier avec Fn−1. D’après le théorème de Gauss : d|Fn−1Fp et d
premier avec Fn−1 implique d|Fp. Finalement d|Fn et d|Fp.

∀(n, p) ∈ N∗ × N, pgcd(Fn+p, Fn) = pgcd(Fn, Fp)

I Démontrons par récurrence sur q ∈ N :

Hq : pgcd(Fqn+p, Fn) = pgcd(Fp, Fn)

• Initialisation. Pour q = 0, la formule est évidente.

• Hérédité. On fixe q ∈ N, on suppose que Hq est vraie :

pgcd(F(q+1)n+p, Fn) = pgcd(Fqn+p+n, Fn) = pgcd(Fqn+p, Fn)︸ ︷︷ ︸
question précédente

= pgcd(Fp, Fn)

Ce qui démontre que Hq+1 est vraie et achève la récurrence.

∀(n, p) ∈ N∗ × N, ∀q ∈ N, pgcd(Fqn+p, Fn) = pgcd(Fp, Fn)
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I Soient m et n deux entiers naturels. Suivons les notations de l’algorithme d’Euclide et posons : r0 = m, r1 = n
et ri le reste de la division euclidienne de ri−2 par ri−1. On sait que cet algorithme se termine dans le sens où
il existe un plus petit entier naturel N ∈ N tel que rN = 0 et que pgcd(m,n) = rN−1.

Démontrons par récurrence sur i ∈ J0, N − 1K :

Hi : pgcd(Fr0 , Fr1) = pgcd(Fri , Fri+1)

• Initialisation. Pour i = 0, la formule est évidente.

• Hérédité. On fixe i ∈ J0, N − 2K et on suppose que Hi est vraie. Effectuons la division euclidienne de ri par
ri+1, on a :

∃q ∈ N, ri = qri+1 + ri+2

Ainsi :
pgcd(Fr0 , Fr1) = pgcd(Fri , Fri+1) = pgcd(Fqri+1+ri+2 , Fri+1) = pgcd(Fri+2 , Fri+1)︸ ︷︷ ︸

question précédente

Ce qui démontre que Hi+1 est vraie et termine la récurrence.

En particulier, HN est vérifiée donc :

pgcd(Fm, Fn) = pgcd(Fr0 , Fr1) = pgcd(FrN−1 , FrN ) = pgcd(FrN−1 , F0) = pgcd(FrN−1 , 0) = FrN−1 = Fpgcd(m,n)

∀(m,n) ∈ N2, pgcd(Fm, Fn) = Fpgcd(m,n)


