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Exercice : L’anneau Z|[j]

1. (a) On sait que 1, j et 42 sont les trois racines cubiques de I'unité. Or des que n > 2, la somme des racines

n-iémes de 'unité vaut 0.
1+j+52=0 I
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(b) L’existence d’'une telle écriture est donnée par la définition de Z[j], il reste & démontrer I'unicité. On
suppose que :
z=a+bj=c+dj avec (a,b,c,d) € Z*

En utilisant I'écriture algébrique de 5 donnée dans la question précédente, il vient :

1 V3, 1. V3.
a—§b—|—71b—c—§d+72d

On identifie les parties imaginaires pour obtenir : b = d puis on identifie les parties réelles pour avoir a = c.
Ce qui démontre 'unicité de ’écriture.

L’écriture d’un élément de Z[j] est unique

2. Nous allons démontrer que (Z[j],+, x) est un anneau en démontrant plutét que c’est un sous-anneau de
(C,+, x). Vérifions les différentes conditions requises.

e Déja Z[j] c C.
e 0 € Z[j] car 0 =0+ 0i.
e Soient z = a + bj et 2/ = ¢+ dj avec (a,b,c,d)€Z4. On a:
z+2 =a+bj+ct+di=(a+c)+ (b+d)j
—— =
€Z €Z
donc z + 2’ € Z[j].
e Soit z = a + bj avec (a,b) € Z%, on a :
2= —(a+bj)= — —b)j
z=—(a+bj) a +(=b)j
€Z €z
donc —z € Z[j].
e1=1+05 € Z[j].

e Soient z = a + bj et 2/ = ¢+ dj avec (a,b,¢,d) € Z*. En utilisant la relation 1 4+ j + j2 = 0, c’est-a-dire

j2:—j—1,ona:

zx 2 = (a+bj) x (c+dj) = ac+ (ad + be)j + bdj* = ac + (ad + be)j 4 bd(—1 — j) = ac — bd + (ad + be — bd)j
N— N———
€Z I/
donc z x 2’ € Z[j].

Enfin la mutiplication des nombres complexes est évidemment commutative, on en déduit que :

(Z[j],+, x) est un anneau commutatif en tant que sous-anneau de (C, +, x)
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3. (a)

Soit z = a + bj avec (a,b) € Z*. On a :
N(z) =z =22=(a+bj)(a+bj) = a® +2ab(j + ) +b*jj =a®> —ab+b* € Z

car j+j=7j+j2=—1letjj=jxj?>=74%=1. Orlemodule d’un nombre complexe est un nombre positif
donc :
N(z) eN

On procede par double implication.

(=) On suppose que z est un inversible de Z[j], cela signifie qu’il existe 2’ € Z[j] tel que zz' = 1. On note
z=a+Dbjet 2 =c+dj avec (a,b,¢,d) € Z*, on a :

N(z) = |22'” = ||| = N(2)N ()

Ainsi N(2)N(2) = N(22/) = N(1) = [1]* = 1. Or N(2) et N(z') sont deux entiers naturels d’apres la
question précédente donc N(z) = 1.

(<) Réciproquement, on suppose que N(z) =1, on a :
N(z) = |2%| = 22 = (a + bj)(a + bj) = (a + bj)(a+bj*) = (a + bj)(a—b—bj) =1

Ainsi z est inversible et son inverse est a — b+ (—b)j.
N e

€7 €7

z est inversible si et seulement si N(z) =1

D’apres la question (b), chercher les inversibles de Z[j] revient a déterminer les éléments de module 1. Soit
2 =a+ bj avec (a,b) € Z%. En utilisant le calcul de la question (a), on a :

Nz =lod —ab+b=1d>—ab+b>*-1=0

On fixe b € Z, on obtient alors une équation de degré 2 en a. Le discriminant vaut A = b?—4(b*>—1) = 4—3b°.
Plusieurs cas sont a considérer :

e Si |b| > 2, ’équation n’a pas de solution réelle car le discriminant est négatif.

e Si |b| =1 alors si b =1 I’équation a pour solution a = 0 et a =1 et si b = —1 "équation a pour solution
a = —1 et a = 0. Ce qui nous donne les inversibles : j, —j, —1 —j et 1 + j.
e Si |b| =0, c’est-a-dire b=0,on a:a=1 et a = —1. Ce qui nous donne les inversibles 1 et —1.

ZU}X = {17_17j7 _j71 +J7_1 _.7}

Donnons les inverses :

1x1=1
(1) x(-1)=1

ix(-l—j)=jxji*=j"=1
—jx(1+j)=1

L’anneau Z[j] n’est pas un corps car tous les éléments non nuls ne sont pas inversibles comme nous 1’avons
vu dans la question précédente.
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Exercice 2 : Triplets pythagoriciens

1. Soit d € N* un diviseur commun de z, y et z, il existe (X,Y, Z) € (N*)3 tels que 2 = dX, y = dY et z = dZ.
On a:
Pyt =22 (dX)P+dY) =d2)? e X2+ YEi= 272

Il suffit de chercher les solutions sans diviseur commun, on obtiendra toutes les solutions en multipliant par un
entier quelconque les trois coordonnées du triplet.

2. Soit d € N* un nombre premier tel que d|z et d|y alors d|z? + y* = 22. Comme d divise 2? alors d apparait
dans la décomposition en facteurs premiers de z2 donc il apparait dans la décomposition en facteurs premiers
de z. En effet, les facteurs premiers de z et z? sont les mémes, seules les valuations changent, ceci étant da
a 'unicité de la décomposition en facteurs premiers. Finalement d divise z. D’apres I’hypothese, un diviseur
positif de x, y et z est égal a 1. On vient de démontrer que = et y n’ont pas de facteur premier en commun,
d’apres le cours cela implique qu’ils sont premiers entre eux.

On démontre de la méme fagon que x Az =y Az =1.

x/\y:x/\z:y/\zzll

Il est alors clair que = et y ne sont pas tous les deux pairs sinon ils auraient 2 comme facteur commun, ce qui
est contradictoire avec le résultat précédent.

3. Par labsurde, si x et y sont impairs alors il existe (k,l) € N? tels que 2 = 2k +1ety = 2+ 1. On a
2% = 4k% + 4k + 1 et y? = 41* + 41 + 1, ainsi 2% = 1[4] et y* = 1[4] donc 2? = 2[4]. C’est absurde car on vérifie
immédiatement avec une table de congruence qu’un carré est congru a 0 ou 1 modulo 4.

x et y sont de parités distinctes.

4. L’entier naturel x est pair et y est impair donc z? est pair et y2 est impair, ce qui implique que 22 est impair
et par suite z est impair. On en déduit que z 4+ y et z — y sont impairs. D’autre part, étant donné que x, y et z
sont nonnuls,ona:z>1,z4+y>1et z—y>1car 22 =4°+ 22 > y? + 1. Finalement :

3(71,,1),11)) € (N*>37 I‘:2u7 Z+y:2v etz—y:Qw

5. Soit d € N* tel que d|v et d|lw alors djv+w =z et dlv —w=y. Or y Az=1doncd=1.

6. On advw = (z +y)(z —y) = 22 —y* = 2 = 4u®.

Uw:U2

On reprend I'égalité précédente en utilisant la décomposition en facteurs premiers :
2
ow= (T »)
peEP

Soit p € P un nombre premier qui apparait dans la décomposition précédente alors plvw. Comme v et w sont
premiers entre eux alors p divise v et p ne divise pas w ou p ne divise pas v et p divise w. Dans la décomposition
précédente en regroupant les facteurs premiers selon qu’ils divisent v ou w, on obtient :

v= ( H p”P(“)>2 et w = ( H pr(U)>2

pEP, plv peEP, plw

I(n,m) € N2, v =n? et w=m?
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7. On a 2v — 2w = 2y > 0 donc v > w d’ott n? > m? et par suite :

Si d € N* avec d|n et d|m alors d|n?> = v et djm? =w, or vAw=1dond=1.

2m? = u? donc u = nm puisque lon travaille avec des entiers naturels.

On a vu que vw = u? donc n

U =nm

8. On vient de démontrer que les conditions données dans cette question sont des conditions nécessaires, 'autre
triplet étant obtenu en supposant z impair et y pair. En effet, z = 2u = 2nm, y = v — w = n? — m? et
z=w+v=n?+m? et m et n sont bien de parités distinctes car y est impair.

Réciproquement, on a bien :

2? +y? = (2nm)? + (n? — m?)? = dn’m? + n* — 202m? + m? = (n? + m?)? = 22

et (z,y,z) est un triplet Pythagoricien car si d est un nombre premier tel que d|z, d|y et d|z alors d|2n? = y+ z
et d|2m2 = z —y. Or d n’est pas pair car y (ou z) est impair puisque n et m sont de parités distinctes. Ainsi
dlm? et d|n? donc d|m et d|n, comme m et n sont premiers entre eux cela implique que d = 1. On a bien un
triplet Pythagoricien primitif.

Probleme : Une équation fonctionnelle

Partie A : Généralités sur les fonctions de £

1. Soit f une fonction constante de R dans R, il existe a € R tel que pour tout z € R, f(x) =a, on a:
T4y

fe&ev(ny) e R fa)+f(y) =2/ (55

& contient deux fonctions constantes, la fonction constante égale a 0 et la fonction constante égale a 1 I

2. La fonction constante égale a 1 appartient a £ mais son opposé, la fonction constante égale a —1, ne vérifie
clairement pas la relation (R).

)f(x;y><:>2a:2a2<$2a(a—1):0<:>a€{0,1}

€ n’est pas un sous-groupe additif de F(R,R)

3. Démontrons cela par double implication. Soit f une fonction de R dans R.
T4y r—vy

(=) On suppose que f vérifie (S) et on se donne (z,7) € R%. En appliquant (S) avec u =
on a:

Flut o) + = o) = 2 f(0) > £@) + £) = 27 (S22) p(252)

Ce qui démontre que f vérifie (R).
(<) Réciproquement, on suppose que f vérifie (R) et on se donne (u,v) € R%. En appliquant (R) &z = u + v
ety=u—v,ona:

f@) + 1) =2/ (50) 1 (55E) © ) + fu—v) = 2 (@) (0)

Ce qui démontre que f vérifie (5).

f vérifie (S) si et seulement si f vérifie (R)
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4. (a) Soit z € R, appliquons (R) au couple (z, ), cela donne :
2f(z) = 2f(2) f(0) (%)

Si f(0) = 0 alors pour tout z € R, f(x) = 0 d’apres la relation ci-dessus. Ceci est exclu puisque, d’apres
I’hypothese de I’énoncé, f n’est pas la fonction nulle. Ainsi :

f(0) #0

On utilise ensuite (%) avec = = 0, cela donne 2f(0) = 2f(0)%. Comme f(0) # 0 alors f(0) = 1.

f(0) =1

(b) Soit z € R, on applique la relation (S) au couple (0, ), cela donne :
f(@) + f(=z) =2f(0)f(z) & f(z) + f(—z) =2f(x)  puisque f(0) =1
Ce qui démontre que pour tout z € R, f(—z) = f(x).

est paire

i

(c) Soit z € R, on applique la relation (R) au couple (z,0), cela donne :

)+ 1o =21(3) & f@ =27(3) -1

Ce qui démontre que :

VreR, f(z)> -1
5. Soit A un réel. Les fonctions x +— ch(Az) et © — cos(Az) sont bien continues sur R. D’apres les relations rappelées
en préambule et en utilisant la parité de ch et 'imparité de sh, on a :
Y(z,y) € R, ch(Az + \y) = ch(\z) ch(\y) + sh(A\z) sh(\y)
Y(z,y) € R?, ch(Az — A\y) = ch(\z) ch(\y) — sh(A\z) sh(\y)
En sommant ces relations on obtient :

Y(z,y) € R, ch(A(z +y)) + ch(A(z — y)) = 2ch(Az) ch(\y)

Ce qui démontre que la fonction z — ch(A\z) vérifie (S) et par suite elle appartient a C.
De méme pour la fonction z +— cos(Az) qui vérifie aussi (S) puisque :

V(x,y) € R?, cos(A(z +y)) + cos(A(z — y)) = 2cos(Az) cos(\y)

x +— ch(A\x) et & — cos(Az) appartiennent a C

6. (a) On fixe u € R. Les fonctions v — u + v, v — u — v et f sont dérivables deux fois sur R ; par composition,
somme et produit, F' est dérivable deux fois sur R. Pour tout v réel, on a :

F'(v) = f'(u+v) = f'(u—v) = 2f(u) f'(v)
F'(v) = f"(u+v) + f"(w—v) = 2f(u) f"(v)




MPSI2 DS5 Mathématiques Corrigé le 13/01/2025

(b) Comme f € &, f vérifie (S) ainsi F est la fonction nulle et F” est également la fonction nulle. C’est-a-dire
que pour tous (u,v) € R? :

flutv) + f(w—v) =2f(u) f"(v)

En particulier pour v = 0, cela donne pour tout u € R : f”(u) = f”(0)f(u). On a le résultat voulu avec :

k=f"(0)

(c) Comme f appartient & £, on a vu a la question 4.(a) que f(0) =1 d’ou la premiére condition. De plus, on
sait que f est une fonction paire, ainsi f est impaire et f’(0) = 0. Grace & la question précédente, on en
déduit que f est solution de :

(d) Raisonnons selon le signe de k :
» Si k =0, les solutions de 1’équation différentielle précédente sont les fonctions définies sur R par

y:x + Az + B ou (A, B) € R% Les conditions initiales imposent A = 0 et B = 1. On trouve comme
solution la fonction constante égale a 1. On remarque que l'on a bien y”(0) =0 = k.

» Si k > 0. L’équation caractéristique s’écrit #2 —k = 0 qui posséde deux solutions réelles : vk et —Vk. Les
solutions de I’équation différentielle précédente sont les fonctions définies sur R par y : x — Ae\/E"”—i—B e~ Vke

ot (A, B) € R?. Tenons compte des conditions initiales :

{y(())zl {A+B:1 {B:l—A %
Yy

0=0 T\ AVE-BVEk=0 T\ AVE+(A-1VE=0 = 1

A==

Ainsi les solutions de I’équation différentielle précédente sont les fonctions y : x — Ch(\/%x). On a bien
y"(0) = k.

» Si k < 0. L’équation caractéristique s’écrit 2 — k = 0 qui posseéde deux solutions complexes : iv/—k et
—iv —k. Les solutions de I’équation différentielle précédente sont les fonctions définies sur R par

y : x> Acos(vV—kx) 4+ Bsin(—v—kz) ot (A, B) € R Tenons compte des conditions initiales :

y0) =1 [ A=1 L[ A=l

y'(0)=0 ~BV-k=0 B=0
Ainsi les solutions de I’équation différentielle précédente sont les fonctions y : z — cos(v/—kz). On a bien
!
y'(0) = k.

Réciproquement les fonctions x +— ch(Ax) et x — cos(Az) appartiennent a £ pour tout A € R, d’apres la
question 5. Les fonctions dérivables deux fois et appartenant a £ sont les fonctions définies sur R par :

x+— 0, z— ch(Az), x+— cos(Az) ou A € R

On n’a pas oublié d’ajouter la fonction nulle qui est bien dérivable deux fois et qui appartient a &.

La suite du probléme va permetire de démontrer que les fonctions trouvées sont exactement les éléments de [’en-
semble C.
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1. (a)

(b)

Partie B : Etude de l’ensemble C
Soit k € N*, on applique la relation (S) au couple (ka,a) cela donne :

f(ka+a)+ f(ka—a) =2f(ka)f(a) & upt1 + ug—1 = 2ugu;

vk € N*, Upt1 + Up—1 = 2ujug I

On peut choisir & = Arccos(uq) puisque u; € [—1, 1], ainsi cos(a) = cos(Arccos(uy)) = u;.

Démontrons-le par récurrence double, pour k£ > 0 on considere 'hypothese :
Hy @ ug = cos(ka)

» Pour £k = 0, on a up = f(0) = 1 d’apres la question 4.(a) de la partie A. Ce qui démontre que
up = cos(0 X ) et par suite Hy est vraie.
» Pour k=1, on a u; = cos(«) par définition de «, H; est vraie.
» Fixons k € N, on suppose que Hj, et Hy11 sont vraies. D’apres la relation démontrée a la question 1.(a),
on a:

Upt2 + Uk = 2UiUp41 € Ugro = 2cos(a) cos((k + 1)a) — cos(ka)

Or pour tous (b,c) € R?, on a : cos(b + ¢) + cos(b — ¢) = 2cos(b) cos(c), si 'on applique cette formule avec
b= (k+1)a et c =« cela donne :

cos((k + 2)ar) + cos(ka) = 2cos((k + 1)) cos(a) < cos((k + 2)a) = 2 cos((k + 1)) cos(a) — cos(ka)

Ce qui démontre que ugyo = cos((k + 2)«) et par suite Hyio est vraie. Ce qui achéve la récurrence.

Vk € N, uy = cos(ka)

Siug ¢ [—1,1] alors u; € R\ [—1, 1] mais d’aprés la question 4.(c) de la partie A, on a f qui est minorée
par —1. Ainsi le cas ot u; = f(a) < —1 est a exclure. On a : u; > 1.
D’apres le cours, la fonction ch est strictement croissante de |0, +o0o] dans |1, 400 et continue, de plus
lin% ch(z) =ch(0) =1 et hlf ch(z) = +oo. D’apres le théoreme de la bijection, ch induit une bijection
T— T—r+00
de ]0, 4+o00[ dans |1, +oo[. Comme nous 'avons vu u; > 1 donc u; admet un antécédent par ch : 35 € R7
tel que u; = ch(f).
Démontrons-le par récurrence double, pour k£ > 0 on considere 'hypothese :

Hi @ ug = ch(kp)
» Pour £k = 0, on a up = f(0) = 1 d’apres la question 4.(a) de la partie A. Ce qui démontre que
up = ch(0 x ) et par suite Hg est vraie.
» Pour k£ =1, on a u; = ch(f) par définition de /3, H; est vraie.
» Fixons k € N, on suppose que Hj, et Hy11 sont vraies. D’apres la relation démontrée a la question 1.(a),

ona:
U2 + Uk = 2uiUg41 < ugro = 2ch(a) ch((k + 1)a) — ch(ka)

Or pour tous (b,¢) € R? on a : ch(b+ ¢) + ch(b — ¢) = 2ch(b) ch(c) comme nous I'avons démontré a la
question 5. de la partie A. Si I'on applique cette formule avec b = (k + 1) et ¢ = (8 cela donne :

ch((k +2)58) + ch(kB) = 2ch((k + 1)5) ch(B) < ch((k + 2)5) = 2ch((k + 1)3) ch(B) — ch(kS)

Ce qui démontre que ugo = ch((k + 2)53) et par suite Hyio est vraie. Ce qui achéve la récurrence.

Vk € N, uy = ch(kS)
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2.

(a)

D’apres la question 4.(a) de la partie A. On sait que f(0) = 1 et dans cette partie f est continue sur R, en
particulier elle est continue en 0, c’est-a-dire que :

Ve>0,3b>0, |t -0 <b=|f(z) — f0)| <e

1
En prenant ¢ = > il existe b > 0 tel que :

[z <b=[f(z) —1] <

Ce qui est équivalent a dire que :
13
_b7 b 3 |:77 7j|

Vo € [=b,b], f(z) € |55

On a bien démontré que :

b >0, Vz € [-b,b], f(z) >0
D’apres le théoreme de caractérisation séquentielle de la limite, on a :

. b

f et continue en 0

n—-4o00

Soit n € N, il s’agit d’appliquer la propriété (S) au couple ( , cela donne :

b
gt 71
(g * gowr) + 10 =21 ()

_b
=2

b
C’est-a-dire que pour tout n € N, v, +1 = QU%H. Or pour tout n € N, on a on € [-b,b] d’apres la question

b
2.(a) cela implique que v, = f (2—n> > 0. Ainsi la relation v, + 1 = 202 41 implique que :

14+ v,
2

Vn eN, v =

On choisit v = Arccos(vg), comme vy €]0,1], on a v € [0, g [ On a bien cos(y) = vg.

Démontrons la propriété demandée par récurrence sur n € N, on pose :

H, : U, = CoS (2%)

» Pour n =0, on a vg = cos(y) par définition de -y, Hy est vraie.
» On fixe n € N et 'on suppose que H,, est vraie. On a :

on 1 cos(%)—i—l 1~ 7
=\ T T 2 - o (527> - oo <2n+1)
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1 4 cos(2c s
On a utilisé au passage la formule : cosQ(c) = +2() avec ¢ = 277“ € [O, 5 [, intervalle sur lequel la
fonction cosinus est positive.
Ce qui acheve la récurrence et démontre que :
Vn €N, v, = cos (%)

On suppose que vg = f(b) > 1. On justifie 'existence de § > 0 tel que vy = ch(J) avec exactement le méme
raisonnement qu’a la question 1.(c). Démontrons par récurrence sur n € N la propriété suivante :

)
H, : v, =ch (27)
» Pour n =0, on a vy = ch(d) par définition de §, Hy est vraie.
» On fixe n € N et 'on suppose que H,, est vraie. On a :

[
Un + 1 Ch<2n>+1 16 5
Uil =\ Ty =\ T b (527) = ch (W)

~ 14ch(2¢) 9
= avec ¢ = o

On a utilisé au passage la formule valable pour tout ¢ € R : ch?(c)

Cette formule de trigonométrie hyperbolique se démontre en revenant a la définition de la fonction ch, pour
1
tout ¢ € R, ch(c) = 5 (ec + efc).

Ce qui acheve la récurrence et démontre que :

Vn €N, v, =ch (%)

b

b
» Si f(b) €]0,1], on a f(Q—n) = cos (%) d’apres la question 2.(d). On pose a = -, on a a > 0
et f(a) € [—1,1] ce qui fait que l'on est dans le cadre de la question 1.(b). On sait alors que pour
tout £k € N, on a : f(ka) = cos(ka). En particulier avec k& = 1 cela donne f(a) = cos(a), c’est-a-dire

b
f<—> = CoS (2%) = cos(a). Or « et 2% sont deux éléments de [0, 7] et leurs cosinus sont égaux, d’ou

L’expression soulignée devient :

V(n, k) € N2, f(k;n) = cos (k%)

b 1) b
» Si f(b) > 1, on a: f<2—n) = ch (2—n> d’apres la question 2.(e). On pose a = o onaa > 0 et
f(a) > 1 ce qui fait que l'on est dans le cadre de la question 1.(c¢). On sait alors que pour tout k € N, on a :

f(ka) = ch(kB). En particulier avec k = 1 cela donne f(a) = ch(/3), ¢’est-a-dire f(%) =ch (2%) = ch(p).
0
Or 8 et — sont strictement positifs et leur cosinus hyperbolique sont égaux, d’ou § = —.

2n 2n
I 4 1 A d 1 .
L’expression soulignée devient :

V(n, k) € N2, f<k£> —ch <k£>
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(2)

i.

ii.

iii.

Pour tout z > 0 et n € N, on a ’encadrement usuel sur la fonction partie entiere :

2"% 1< P”%J < 2”%

On multiplie cet encadrement par on qui est strictement positif pour obtenir :

_£<£[QnEJ<
Toog S f pl =T

D’apres le théoreme d’encadrement, il apparailt que :

lim p, =
n%lrfoo 2”pn -7

D’apres le résultat de la question précédente et par continuité de f en z € Ry, on a :

tim f(2p) = f(a)

n—-+0o

Comme dans tout le probléme, il y a deux cas a distinguer :

» Si f(b) €]0,1], on peut appliquer la question 2.(f) avec k = p,, qui est bien un entier. Cela nous
b gl . gl Y o

donne que pour tout n € N, f<2—npn) = cos (pnz—n> Or ngrfoop”?l = wg En passant a la limite

dans la relation soulignée grace a la continuité des fonctions mises en jeu et a la question précédente,

on obtient :

f(z) = cos (w%)

» Si f(b) > 1, on peut appliquer la question 2.(f) avec k = p, qui est bien un entier. Cela nous

b 1 0 o
donne que pour tout n € N, f(z—npn) =ch <pn2—n) Or lirf pn2—n = :pg En passant a la limite dans
n—-+0o0

la relation soulignée grace a la continuité des fonctions mises en jeu et a la question précédente, on
obtient :

f(z) =ch (x%)

3. Les fonctions appartenant a C sont paires d’apres la question 4.(b) de la partie A, ainsi les relations trouvées
précédemment valables sur R, le sont aussi sur R. Ce qui démontre que si f est une fonction non nulle appar-
tenant a C alors :

f R =R f:Hj avec A € R

_>
x +— cos(Ax) —  ch(A\z)

Ceci en posant A = Tour= 0 selon que f(b) €]0,1] ou f(b) > 1.

b b

Réciproquement de telles fonctions appartiennent a C d’apres la question 5. de la partie A.

En résumé, en tenant compte de la fonction nulle qui appartient bien str a C, I'ensemble C est composé des
fonctions définies sur R par :

x+— 0, z— cos(A\x), =+ ch(Az) ou A € R
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Exercice 3 : Arithmétique de la suite de Fibonacci

1. Soit n € N, I'identité de Cassini démontrée dans le DS2 s’écrit : F,%H —F,F12 = (—1)". Soit p € Z, un diviseur
commun de F, 11 et F), alors p divise toute combinaison de Fj, 1 et Fj,. En particulier p divise F,% 1~ =
(—=1)". Ce qui démontre que les seuls diviseurs communs de Fj, 11 et F), sont —1 et 1.

Vn € N, F,4+1 et F,, sont premiers entre eux'

2. » Démontrons par récurrence double sur p € N :

Hp : Vn € N*, Fn+p = anle + Fan+1

e Initialisation. Pour p = 0, on a Fy = 0 et F; = 1 ainsi la formule annoncée se résume a : Vn € N*, F,, = F,,.
Pour p=1,ona: F; =1 et F; = 1 ainsi la formule annoncée devient : Vn € N*, F,, .1 = F,,_1 + F,,. Ce qui est
vrai par définition de la suite de Fibonacci.

e Hérédité. On suppose H,, et Hp41 vraies pour un entier naturel p fixé. Soit n € N*, on a :

Froipr2 = Fuypi1 + Fuyp par définition de la suite de Fibonacci
= (Fho1Fpp1 + FnFp2) + (Fp—1Fp + FFp1)  en utilisant Hyq et H,
= Fao1(Fppr + 1) 4+ Fu(Fpea + Fpia)
= FhaFpio+ FrFpis

Nous avons démontré H,o et cela termine la récurrence.

V(n,p) e N* x N, Fn+p = Fn_le + Fan+1

» Soit n € N* et p € N, nous allons démontrer que les couples (Fj, Fy,) et (Fy4p, F,) ont les mémes diviseurs
communs ainsi ils auront bien le méme pged.

e Soit d € Z, si d|F}, et d|F}, alors d|(Fp,—1 Fp+FyFpi1) = Fyyp (d’apres la question précédente). Ce qui démontre
que d|F,, et d|Fp4p.

e Soit d € Z, si d|Fy4p et d|F, alors d|(Fy4p— FpnFpt1) = Fr—1F,. Or F,, et F;,_; sont premiers entre eux d’apres
la question 1., par hypothese d|F;,, donc d est premier avec F;,_;. D’apres le théoreme de Gauss : d|F;,_1F}, et d
premier avec F,_; implique d|F),. Finalement d|F, et d|F}.

V(n,p) € N* x N, pged(Fpyp, Frn) = pged(Fy, F)p)

» Démontrons par récurrence sur ¢ € N :

Hy o pged(Fynap, Frn) = pged(EFp, F,)
e Initialisation. Pour ¢ = 0, la formule est évidente.
e Hérédité. On fixe ¢ € N, on suppose que H, est vraie :

ngd(F(q-i-l)’n—‘rp? Fy) = pged(Fgntpin, Fn) = pged(Fynp, Fn) = pged(Fyp, Fy)

question précédente

Ce qui démontre que Hy41 est vraie et acheve la récurrence.

V(n,p) € N* x N, Vg € N, pged(Fynip, Fn) = pged(Fy, Fy,)
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» Soient m et n deux entiers naturels. Suivons les notations de I’algorithme d’Euclide et posons : rg = m, r1 = n
et r; le reste de la division euclidienne de r;_o par r;_1. On sait que cet algorithme se termine dans le sens ou
il existe un plus petit entier naturel N € N tel que ry = 0 et que pged(m,n) = ry_1.

Démontrons par récurrence sur i € [0, N — 1] :
Hi : ngd(FT()> FT1) = ngd(F’l”iv FT‘Z‘Jrl)
e Initialisation. Pour ¢ = 0, la formule est évidente.

e Hérédité. On fixe i € [0, N — 2] et on suppose que H,; est vraie. Effectuons la division euclidienne de r; par
Ti+1, O a :
JgeN, r, =qriz1 +rive
Ainsi :
ngd(Frm FTl) = ngd(an FTi+1) = ngd(FqTi+1+7'i+2’ Fri+1) = ngd(Fm+zv FT¢+1)

question précédente

Ce qui démontre que H; 1 est vraie et termine la récurrence.
En particulier, Hy est vérifiée donc :

pgcd(Fo, Frn) = pged(Fry, Fry) = pged(Fry_,, Fry) = pged(Fry_, Fo) = pged(Fry_1,0) = Fry_, = Foged(mon)

V(m, TL) € N2> ngd(Frm Fn) = Fpgcd(m,n)



