
Problème

A-Préliminaires géométriques

Le but de cette partie est double, d’une part donner une condition simple portant sur les affixes de deux vecteurs pour
traduire la colinéarité ou l’orthogonalité de ces vecteurs. D’autre part, on démontre le résultat bien connu affirmant
que les médiatrices d’un triangle sont concourantes et on donne l’affixe de ce point de concours.

1. (a) Soit z = x+ iy avec (x, y) ∈ R2, on a y = Im(z) =
z − z

2i
. Ainsi nous avons les équivalences suivantes :

z ∈ R⇔ y = 0⇔ z − z
2i

= 0⇔ z = z.

(b) De même, on a x = Re(z) =
z + z

2
, d’où :

z ∈ iR⇔ x = 0⇔ z + z

2
= 0⇔ z = −z.

En résumé :
z ∈ R⇔ z = z
z ∈ iR⇔ z = −z

2. (a) Par définition −→v1 .−→v2 = x1x2 + y1y2, ce qui devient d’après les formules données à la question précédente :

−→v1 .−→v2 =
(z1 + z1

2

)(z2 + z2
2

)
+
(z1 − z1

2i

)(z2 − z2
2i

)
=

1
4

(
z1z2 + z1z2 + z1z2 + z1z2 − z1z2 + z1z2 + z1z2 − z1z2

)
=

1
2

(
z1z2 + z1z2

)
Pour le déterminant, nous avons :

det(−→v1 ,−→v2) = x1y2 − x2y1

=
(z1 + z1

2

)(z2 − z2
2i

)
−
(z2 + z2

2

)(z1 − z1
2i

)
=

1
4i

(
z1z2 − z1z2 + z1z2 − z1z2 − z1z2 + z2z1 − z2z1 + z1z2

)
=

1
2i

(
z1z2 − z1z2

)
Récapitulons :

−→v1 .−→v2 =
1
2

(
z1z2 + z1z2

)
det(−→v1 ,−→v2) =

1
2i

(
z1z2 − z1z2

)
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(b) D’après ce qui a été rappelé en introduction, on a :
−→v1 et −→v2 sont orthogonaux ⇔ −→v1 .−→v2 = 0

” ⇔ 1
2

(z1z2 + z1z2) = 0 d’après 2.(a)

” ⇔ z1z2 = −z1z2 puis on divise par z1z1 qui est non nul par hypothèse

” ⇔ z2
z1

= −z2
z1

” ⇔
(z2
z1

)
= −z2

z1

” ⇔ z2
z1
∈ iR d’après la question 1.(b)

On effectue le même type de calcul pour la seconde assertion :
−→v1 et −→v2 sont colinéaires ⇔ det(−→v1 ,−→v2) = 0

” ⇔ 1
2i

(z1z2 − z1z2) = 0 d’après 2.(a)

” ⇔ z1z2 = z1z2 puis on divise par z1z1 qui est non nul par hypothèse

” ⇔ z2
z1

=
z2
z1

” ⇔ z2
z1

=
(z2
z1

)
” ⇔ z2

z1
∈ R d’après la question 1.(a)

Nous avons retrouvé les caractérisations de l’orthogonalité et de la colinéarité à l’aide des nombres com-
plexes :

−→v1 et −→v2 sont orthogonaux⇔ z2
z1
∈ iR

−→v1 et −→v2 sont colinéaires⇔ z2
z1
∈ R

3. (a) On sait que ∆AB est l’ensemble des points du plan équidistants de A et B, on va de plus utiliser que
MA = |z − a| et MB = |z − b| :

M ∈ ∆AB ⇔ MA = MB

” ⇔ |z − a| = |z − b|

” ⇔ |z − a|2 = |z − b|2 car les modules sont positifs

” ⇔ (z − a)(z − a) = (z − b)(z − b)

” ⇔ (z − a)(z − a) = (z − b)(z − b) d’après les propriétés de la conjugaison
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M ∈ ∆AB ⇔ zz − az − az + aa = zz − bz − bz + bb

⇔ (b− a)z + (b− a)z = bb− aa

Ce qui démontre le résultat souhaité :

M ∈ ∆AB ⇔ (b− a)z + (b− a)z = bb− aa

(b) Dans le calcul précédent, on n’a pas utilisé de propriétés particulières de A et B, ce sont juste deux points
distincts du plan exactement comme le sont B et C. Il suffit de remplacer a par b et b par c dans l’expression
précédente pour obtenir une équation complexe de ∆BC . Ainsi :

M ∈ ∆BC ⇔ (c− b)z + (c− b)z = cc− bb

Avec le même raisonnement, on a également :

M ∈ ∆CA ⇔ (a− c)z + (a− c)z = aa− cc

(c) Remarquons que l’hypothèse de l’énoncé, A, B et C non alignés, permet de dire que A, B et C sont distincts
deux à deux.
Par l’absurde, on suppose que (b− a)(c− a)− (c− a)(b− a) = 0. On divise cette relation par (b− a)(b− a)
qui est non nul puisque A et B sont deux points distincts, il vient en utilisant la question 1.(a) :

c− a
b− a

− c− a
b− a

= 0⇔ c− a
b− a

=
(c− a
b− a

)
⇔ c− a

b− a
∈ R.

Or c−a est l’affixe du vecteur
−→
AC et b−a celle du vecteur

−−→
AB, ainsi d’après la question 2.(b) on en déduit

que les vecteurs
−−→
AB et

−→
AC sont colinéaires. Ceci est absurde puisque A, B et C ne sont pas alignés. On a

démontré que :

(b− a)(c− a)− (c− a)(b− a) 6= 0

(d) Tout vecteur directeur de ∆AB est orthogonal à
−−→
AB et tout vecteur directeur de ∆CA est orthogonal à

−→
AC.

Or
−−→
AB et

−→
AC ne sont pas colinéaires puisque A, B et C ne sont pas alignés, ceci montre que les droites

∆AB et ∆CA ne sont pas parallèles d’où :

∆AB et ∆CA sont sécantes

(e) Un point M appartient à l’intersection des droites ∆AB et ∆CA si et seulement si l’affixe z de M vérifie
l’équation de ∆AB trouvée à la question 3.(a) et l’équation de ∆CA déduite à la question 3.(b) :

M ∈ ∆AB ∩∆CA ⇔
{

(b− a)z + (b− a)z = bb− aa
(a− c)z + (a− c)z = aa− cc

L’énoncé donne une expression de z, ainsi il va s’agir d’éliminer les z. Pour ce faire on peut multiplier la
première équation par (a− c) et la seconde par (b− a) puis les soustraire cela donne :

[(b− a)(a− c)− (a− c)(b− a)]z = (bb− aa)(a− c)− (aa− cc)(b− a)
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On peut ainsi isoler z :

z =
(bb− aa)(a− c)− (aa− cc)(b− a)

(b− a)(a− c)− (a− c)(b− a)
le dénominateur étant non nul d’après 3.(c)

=
abb− a2a− bcb+ aca− aba+ bcc+ a2a− acc

ab− aa− cb+ ca− ba+ bc+ aa− ac

=
ab(b− a) + bc(c− b) + ca(a− c)
ab− ba+ bc− cb+ ca− ac

.

Un point M appartenant à ∆AB ∩∆CA a nécessairement pour affixe le complexe trouvé ci-dessus, or on
a vu à la question 3.(d) que les droites ∆AB et ∆CA sont sécantes. Ainsi ∆AB et ∆CA se coupent en un
unique point d’affixe :

ω =
ab(b− a) + bc(c− b) + ca(a− c)
ab− ba+ bc− cb+ ca− ac

(f) Par le même calcul, il existe un unique point d’affixe ω̃ dans ∆BC ∩ ∆AB dont l’expression s’obtient en
remplaçant a par b, b par c et c par a dans l’expression précédente, cela donne :

ω̃ =
bc(c− b) + ca(a− c) + ab(b− a)
bc− cb+ ca− ac+ ab− ba

On remarque immédiatement que ω = ω̃, c’est-à-dire que :

les médiatrices ∆AB, ∆BC et ∆CA sont concourantes en un point Ω d’affixe ω

B-Droite de Simson

Le but de cette partie est d’étudier l’alignement de 3 projetés orthogonaux selon la position du point que l’on
projette. Ce résultat a été mis en évidence par Simson puis démontré par Wallace en 1799. À noter qu’il existe des
démonstrations géométriques de ce résultat, même si le point de vue adopté ici est l’utilisation des nombres complexes.

1. Les points A, B et C vérifient les hypothèses de l’étude faite dans la partie précédente. Notons encore Ω d’affixe
ω le point de concours des médiatrices du triangle ABC. Le point Ω est équidistant de A, B et C, posons
r = |ω− a| = |ω− b| = |ω− c|. On remarque que r > 0 puisque par hypothèse le triangle n’est pas aplati. Ainsi

le complexe
a− ω
r

est de module 1, on considère un de ses arguments α ∈ R, de sorte que :

a− ω
r

= eiα ⇔ a = ω + reiα.

On applique le même raisonnement pour b et c, on obtient également l’existence de (β, γ) ∈ R2 tels que :

a = ω + reiα

b = ω + reiβ

c = ω + reiγ

La relation r = |ω− a| = |ω− b| = |ω− c| montre que A, B et C se situent sur le cercle de centre Ω et de rayon
r. Ce cercle, Γ, s’appelle le cercle circonscrit au triangle ABC.
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2. Utilisons l’écriture trouvée à la question précédente :

b− a = ω + reiβ − (ω + reiα)

= r(eiβ − eiα) pour continuer la factorisation, on passe à l’angle moitié :

= rei
α+β

2 (ei
β−α

2 − e−i
β−α

2 )

= 2ir sin
(β − α

2

)
ei

α+β
2

= 2r sin
(β − α

2

)
ei

α+β+π
2 en utilisant i = ei

π
2 .

Pour continuer l’étude deux cas sont à considérer :

? Si sin
(β − α

2

)
> 0, alors :

|b− a| = 2r sin
(β − α

2

)
un argument de b− a est

α+ β + π

2

? Si sin
(β − α

2

)
< 0, en utilisant −1 = eiπ, on a la réécriture : b− a = −2r sin

(β − α
2

)
ei

α+β+3π
2 , ainsi :

|b− a| = −2r sin
(β − α

2

)
un argument de b− a est

α+ β + 3π
2

Supposons α = β [2π] alors eiα = eiβ et d’après la question 1. cela montre que a = b. Ceci est exclu puisque A
et B sont distincts. Avec le même raisonnement pour β et γ puis pour α et γ, on obtient :

α, β et γ sont distincts deux à deux modulo 2π

3. (a) Par définition du projeté orthogonal, le vecteur
−−→
MA′ est orthogonal au vecteur

−−→
BC. Par construction

A′ ∈ (BC) donc
−−→
BA′ est colinéaire à

−−→
BC et, de même,

−−→
CA′ est colinéaire à

−−→
BC. Pour résumer :

−−→
MA′ est orthogonal à

−−→
BC

−−→
BA′ est colinéaire à

−−→
BC

−−→
CA′ est colinéaire à

−−→
BC

(b) L’idée va être d’utiliser le même type de factorisation qu’à la question 2., ainsi il sera aisé de simplifier le
quotient proposé, on a :

c− b = ω + reiγ − (ω + reiβ) = r(eiγ − eiβ) = 2ir sin
(γ − β

2

)
ei

γ+β
2

en conjuguant cette expression : c − b = −2ir sin
(γ − β

2

)
e−i

γ+β
2 . Cette dernière expression est non nulle

puisque, r étant strictement positif, on a :

c− b = 0⇔ sin
(γ − β

2

)
= 0⇔ γ − β

2
= 0 [π]⇔ γ = β [2π],
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ceci est exclu d’après la question 2. On peut donc diviser par c− b, on obtient :

c− b
c− b

=
2ir sin(γ−β2 )ei

γ+β
2

−2ir sin(γ−β2 )e−i
γ+β

2

En simplifiant, on obtient :

c− b
c− b

= −ei(γ+β)

(c) Remarquons que les affixes des vecteurs
−−→
MA′,

−−→
BA′,

−−→
CA′ et

−−→
BC sont respectivement a′− z, a′− b, a′− c et

c− b. D’après les résultats obtenus dans la partie A question 2.(a), les relations entre les vecteurs ci-dessus
obtenues à la question 3.(a) se réécrivent :

−−→
MA′ est orthogonal à

−−→
BC ⇔

−−→
MA′.

−−→
BC = 0 ⇔ (a′ − z)(c− b) + (a′ − z)(c− b) = 0 (1)

−−→
BA′ est colinéaire à

−−→
BC ⇔ det(

−−→
BA′,

−−→
BC) = 0 ⇔ (a′ − b)(c− b)− (a′ − b)(c− b) = 0 (2)

−−→
CA′ est colinéaire à

−−→
BC ⇔ det(

−−→
CA′,

−−→
BC) = 0 ⇔ (a′ − c)(c− b)− (a′ − c)(c− b) = 0 (3)

L’expression à obtenir ne possède plus de terme en a′, c’est pour cela qu’il semble judicieux d’ajouter les
relations (1) et (2), nous obtenons :

2a′(c− b)− (b+ z)(c− b) + (b− z)(c− b) = 0

⇔ a′ =
b+ z

2
+
z − b

2
× c− b
c− b

on a bien c− b 6= 0

⇔ a′ =
z + b

2
− z − b

2
ei(β+γ) ceci en utilisant la question précédente.

Pour obtenir l’autre relation souhaitée, on ajoute (1) et (3), on trouve par le même type de calcul :

a′ =
z + c

2
− z − c

2
ei(β+γ).

On a bien démontré :

a′ =
z + b

2
− z − b

2
ei(β+γ) =

z + c

2
− z − c

2
ei(β+γ)

(d) Les rôles joués par A, B et C sont symétriques, on peut remplacer A par B, B par C, C par A et A′ par
B′ pour obtenir une expression de b′. On remplace enfin A par C, B par A, C par B et A′ par C ′ pour
obtenir une expression de c′. Plus explicitement, on a :

b′ =
z + c

2
− z − c

2
ei(α+γ) =

z + a

2
− z − a

2
ei(α+γ)

c′ =
z + a

2
− z − a

2
ei(β+α) =

z + b

2
− z − b

2
ei(β+α)
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4. (a) Supposons donc M différent de B, c’est-à-dire z 6= b. D’après les questions 3.(c) et 3.(d), nous avons :

a′ − c′ =
z + b

2
− z − b

2
ei(β+γ) −

(z + b

2
− z − b

2
ei(β+α)

)
=

z − b
2

(ei(β+α) − ei(β+γ))

=
z − b

2
eiβ(eiα − eiγ)

=
z − b

2
eiβei

α+γ
2 (ei

α−γ
2 − e−i

α−γ
2 )

= 2i
z − b

2
eiβ sin

(α− γ
2

)
ei

α+γ
2

.

Afin de pouvoir diviser par a′−c′ remarquons tout de suite que z 6= b et sin
(α− γ

2

)
6= 0 puisque α 6= γ [2π].

Par un calcul tout à fait similaire, nous obtenons :

c′ − b′ = 2i
z − a

2
eiα sin

(γ − β
2

)
ei

β+γ
2

Il reste à faire le quotient de ces deux quantités :

c′ − b′

a′ − c′
=

2i( z−a2 )eiα sin(γ−β2 )ei
β+γ

2

2i( z−b2 )eiβ sin(α−γ2 )ei
α+γ

2

= ei
α−β

2 ×
sin(γ−β2 )
sin(α−γ2 )

× z − a
z − b

On obtient le résultat attendu :

c′ − b′

a′ − c′
= ei

α−β
2 ×

sin(γ−β2 )
sin(α−γ2 )

× z − a
z − b

(b) On utilise les expressions obtenues à la question 1. :

aei(α−β) − b = (ω + re−iα)ei(α−β) − (ω + re−iβ)

= ω(ei(α−β) − 1).

En procédant de même pour bei(α−β) − a, on obtient :

aei(α−β) − b = ω(ei(α−β) − 1)
bei(α−β) − a = ω(ei(α−β) − 1)
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(c) On utilise là-aussi les expressions de a et b trouvées dans la question 1. :

abei(α−β) − ab = (ω + re−iα)(ω + reiβ)ei(α−β) − (ω + reiα)(ω + re−iβ)

= ωωei(α−β) + rωeiβei(α−β) + rωe−iαei(α−β) + r2 − ωω − rωe−iβ − rωeiα − r2ei(α−β)

= (ωω − r2)(ei(α−β) − 1).
On a :

abei(α−β) − ab = (ωω − r2)(ei(α−β) − 1)

5. Il s’agit d’examiner en détail l’expression trouvée à la question 4.(a), déjà le facteur
sin(γ−β2 )
sin(α−γ2 )

est réel, ainsi :

c′ − b′

a′ − c′
∈ R ⇔ ei

α−β
2
z − a
z − b

∈ R ⇔ ei
α−β

2
z − a
z − b

= e−i
α−β

2
z − a
z − b

” ⇔ ei(α−β)(z − a)(z − b) = (z − a)(z − b)

” ⇔ (ei(α−β) − 1)zz − (aei(α−β) − b)z − (bei(α−β) − a)z + abei(α−β) − ab = 0

et avec 4.(b) et 4.(c) ⇔ (ei(α−β) − 1)zz − (ei(α−β) − 1)ωz − (ei(α−β) − 1)ωz + (ωω − r2)(ei(α−β) − 1) = 0

” ⇔ zz − ωz − ωz + ωω − r2 = 0

La dernière équivalence étant obtenue en divisant par ei(α−β) − 1 qui est non nul puisque α et β sont distincts
modulo 2π. Ainsi :

c′ − b′

a′ − c′
∈ R⇔ zz − ωz − ωz + ωω − r2 = 0

6. Traitons pour commencer M = B exclu dans les deux questions précédentes. On procède par double implication :
(⇒) On suppose A′, B′ et C ′ alignés. Si M = B, il est clair que M appartient au cercle circonscrit au triangle
ABC.
(⇐) Réciproquement, on suppose que M ∈ Γ. Si M = B alors, par construction, A′ = C ′ = B, il est donc clair
que A′, B′ et C ′ sont alignés.
Ce qui démontre l’équivalence souhaitée dans la cas où M = B.
Plaçons-nous à présent dans le cas général où M 6= B, l’étude faite aux questions 4. et 5. s’applique. Le point
crucial est de remarquer que l’équation de la question 5. se réécrit :

zz − ωz − ωz + ωω − r2 = 0⇔ (z − ω)(z − ω) = r2 ⇔ (z − ω)(z − ω) = r2 ⇔ |z − w|2 = r2.

On a ainsi en vertu de la caractérisation de la colinéarité obtenue dans la partie A :

A′, B′ et C ′ sont alignés ⇔ c′ − b′

a′ − c′
∈ R⇔ |z − w|2 = r2 ⇔M ∈ Γ.

D’où le résultat souhaité :

A′, B′ et C ′ sont alignés si et seulement si M appartient à Γ

Voici un graphique illustrant cette situation, la droite de Simson est notée D.
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C-Droite de Steiner

Le but de cette partie est de mettre en évidence une nouvelle configuration géométrique d’alignement qui se déduit
de la précédente via une homothétie. Elle utilise de façon cruciale les résultats et calculs de la partie B.

1. L’expression de h étant symétrique en α, β et γ, nous allons nous contenter de vérifier que
−−→
AH est orthogonal

à
−−→
BC, on aura de façon analogue

−−→
BH est orthogonal à

−→
CA et

−−→
CH est orthogonal à

−−→
AB. Cela démontrera bien

que H appartient aux trois hauteurs du triangle ABC. L’affixe de
−−→
AH est h− a et l’affixe de

−−→
BC est c− b, en

utilisant la caractérisation de l’orthogonalité démontrée dans la partie A, on a :
−−→
AH ⊥

−−→
BC ⇔ (h− a)(c− b) + (h− a)(c− b) = 0

” ⇔ [r(eiβ + eiγ)][r(e−iγ − e−iβ)] + [r(e−iβ + e−iγ)][r(eiγ − eiβ)] = 0

” ⇔ r2[ei(β−γ) − 1 + 1− e−i(β−γ) + e−i(β−γ) − 1 + 1− ei(β−γ)] = 0

” ⇔ 0 = 0.

H d’affixe h = ω + r(eiα + eiβ + eiγ) est l’orthocentre du triangle ABC

2. Notons PA le projeté orthogonal de A sur (BC), on a (APA) qui est ainsi une hauteur du triangle ABC. D’après
la question 3.(c) de la partie B, on connâıt une expression de l’affixe pA de PA :

pA =
a+ b

2
− a− b

2
ei(β+γ) =

a+ c

2
− a− c

2
ei(β+γ).
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Pour obtenir cette expression, on a simplement remplacé z par a puisque l’on projette le point A et non plus le
point M .
Notons SA le symétrique orthogonal de H par rapport à (BC), comme PA est aussi le projeté orthogonal de H
sur (BC), on :

−−−→
HSA = 2

−−−→
HPA.

Voici un dessin représentant la situation :

On traduit cette dernière relation avec les affixes, en notant sA l’affixe de SA, on a sA−h = 2(pA−h), c’est-à-dire
en utilisant l’expression de pA obtenue ci-dessus :

sA = 2pA − h

= a+ c− (a− c)ei(β+γ) − w − r(eiα + eiβ + eiγ)

= ω + reiα + ω + reiγ − (re−iα − re−iγ)ei(β+γ) − w − r(eiα + eiβ + eiγ)

= ω − rei(β+γ−α).

Au cours de ce calcul, on a utilisé : a = ω + reiα et c = ω + reiγ relations trouvées au début de la partie B.
On a alors |sA − ω| = r ce qui montre que SA ∈ Γ. Toujours d’après la symétrie entre A, B et C, on a :

les symétriques orthogonaux de H par rapport aux trois côtés du triangle appartiennent à Γ

3. (a) Par construction, on a :

A′ est le milieu de [MA′′] ⇔
−−−→
MA′′ = 2

−−→
MA′

B′ est le milieu de [MB′′] ⇔
−−−→
MB′′ = 2

−−−→
MB′

C ′ est le milieu de [MC ′′] ⇔
−−−→
MC ′′ = 2

−−−→
MC ′

On a aussi évidemment
−−−→
MM = 2

−−−→
MM . Ainsi :

l’homothétie de centre M et de rapport 2 transforme M en M, A′ en A′′, B′ en B′′ et C ′ en C ′′
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(b) On note a′′, b′′ et c′′ les affixes respectives de A′′, B′′ et C ′′, la traduction à l’aide des nombres complexes
de l’homothétie précédente est : a′′ − z = 2(a′ − z), c’est-à-dire a′′ = 2a′ − z. De même b′′ = 2b′ − z et
c′′ = 2c′ − z. Distinguons deux cas :
? Si A′′ = B′′, alors il est clair que A′′, B′′ et C ′′ sont alignés.
? Si A′′ 6= B′′, on a :

c′′ − a′′

b′′ − a′′
=

2c′ − z − (2a′ − z)
2b′ − z − (2a′ − z)

=
c′ − a′

b′ − a′
∈ R

car on sait, d’après la partie B, que A′, B′ et C ′ sont alignés puisque M ∈ Γ. Ainsi
c′′ − a′′

b′′ − a′′
∈ R signifie

que
−−−→
A′′C ′′ et

−−−→
A′′B′′ sont colinéaires.

Les points A′′, B′′ et C ′′ sont alignés

Voici un dessin représentant la situation, la droite de Steiner est notée ∆ :

(c) Si M = B le résultat est clair puisque dans ce cas A′′ = C ′′ = B et la droite de Steiner de B est la droite
(BB′′) qui passe par H puisque c’est une hauteur. Plaçons-nous dans la suite de cette question dans le cas

où M 6= B, on a alors A′ 6= C ′ d’après la question 4.(a) de la partie B. Le vecteur
−−−→
A′′C ′′ = 2

−−→
A′C ′ est donc
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non nul, c’est un vecteur directeur de la droite de Steiner de M qui est parallèle à la droite de Simson de
M . Il reste à démontrer que

−−−→
A′′H est colinéaire à

−−→
A′′C, ainsi H appartiendra à la droite de Steiner de M .

On a d’après les calculs faits à la question 4.(a) de la partie B :

c′′ − a′′ = 2(c′ − a′) = 2i(b− z) sin
(α− γ

2

)
eiβei

α+γ
2 .

D’autre part d’après l’étude menée dans le début de la partie C, on a :

h− a′′ = ω + r(eiα + eiβ + eiγ)− 2a′ + z.

Comme M ∈ Γ, on peut trouver avec un raisonnement analogue à celui de la question 1. de la partie B,
θ ∈ R tel que z = ω + reiθ, de plus d’après la question 3.(c) de la partie B, on a :

c′′ − a′′ = 2iei(β+α
2
+ γ

2
) sin

(α− γ
2

)
(ω + re−iβ − ω − re−iθ) on passe à l’angle moitié :

= 2irei(β+α
2
+ γ

2
) sin

(α− γ
2

)
e−i(

β+θ
2

)(2i sin(
θ − β

2
))

= 4r sin(
α− γ

2
) sin

(β − θ
2

)
ei

α+β+γ−θ
2

Simplifions aussi h− a′′, cela donne :

h− a′′ = ω + r(eiα + eiβ + eiγ)− z − c+ (z − c)ei(β+γ) + z

= ω + reiα + reiβ + reiγ − ω − reiγ + (ω + re−iθ − ω − re−iγ)ei(β+γ)

= r(eiα + eiβ + ei(β+γ−θ) − eiβ)

= rei
α+β+γ−θ

2 2 cos
(α+ β + γ − θ

2

)
On a ainsi :

h− a′′

c′′ − a′′
=

cos(α+β+γ−θ
2 )

2 sin(α−γ2 ) sin(β−θ2 )
∈ R, donc

−−−→
A′′H est colinéaire à

−−−→
A′′C ′′. Ce qui démontre que :

H est bien sur la droite de Steiner de M

Robert Simson est un mathématicien Ecossais du 18ième siècle. Il a notamment traduit et expliqué les travaux
géométriques d’Euclide. Il fut également le premier à remarquer que le quotient de deux termes consécutifs de la suite
de Fibonacci tend vers le nombre d’or.

Jacob Steiner est un mathématicien Suisse du 19ième siècle, à 14 ans il ne savait pas lire et ne s’initia aux
mathématiques qu’à 17 ans. Les travaux de Steiner concernent essentiellement la géométrie.
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