Probleme

A-Préliminaires géométriques

Le but de cette partie est double, d’une part donner une condition simple portant sur les affixes de deux vecteurs pour
traduire la colinéarité ou l'orthogonalité de ces vecteurs. D’autre part, on démontre le résultat bien connu affirmant
que les médiatrices d’un triangle sont concourantes et on donne l’affize de ce point de concours.

z—z

1. (a) Soit z = x + iy avec (z,y) € R% on ay =Im(z) = 5 Ainsi nous avons les équivalences suivantes :
zER@yzO@ZQ_iE:O@z:Z.
(b) De méme, on a x = Re(z) = & +§, d’ou :
zciRer=0& Z;—E:O@z:—z.

En résumé :

2. (a) Par définition v7.v3 = w129 + Y192, ce qui devient d’apres les formules données & la question précédente :
— — Z1+ 21\ (%2 + 22 21— 21\ (%22 — 22
w# = () () () (B
2 2 21 21

1 o . o .
= 1(2’122 + 2129 + 21220 + 2122 — 21290 + 2129 + Z129 — 2122>

1
= = <2122 + 2122>
2
Pour le déterminant, nous avons :

det(v1,v2) = @1y2 — T2y

B (Zl +71><22 —72) _ <Z2 +72) (Zl —71>
- 2 2i 2 2i

1 o - . -
T (27122 — 2122 + Z129 — 2122 — 2122 + 2221 — 2221 + 2122)

i (72— 217)
= —|Z122 — 217
2 1<2 1<2

Récapitulons :

1
V1.V = B <2172 + 522>

1
det(v1,v3) = % (7122 — zw?)




(b) D’apres ce qui a été rappelé en introduction, on a :

— — — —
v1 et vy sont orthogonaux < wvi.v3 =0

1
» N 5(2172_}_7122) =0 d’apres 2.(a)

7 & 2179 = —Z129 puis on divise par z1z7 qui est non nul par hypothese
9 PN 2 — _272

Z1 z1
. o (2)--2

z1 z1
9 22 . ) N .
& = el d’apres la question 1.(b)
21

On effectue le méme type de calcul pour la seconde assertion :

— — < s — —
v] et vg sont colinéaires <  det(vy,v3) =0

1 .
7 & ?(7122 —z172) =0 d’apres 2.(a)

i
7 & Zize = 21%2 puis on divise par z1z7 qui est non nul par hypothese
kM <:> @ — ?

z1 =1
e 2

21 <1
9 z2 5 N .

& —eR d’apres la question 1.(a)
21

Nous avons retrouvé les caractérisations de I'orthogonalité et de la colinéarité a 1’aide des nombres com-
plexes :

Z2 .
v_f et @ sont orthogonaux < — € iR
Z1

—_ . — ., z9
v1 et vy sont colinéaires & — € R
Z1

3. (a) On sait que Ap est I’ensemble des points du plan équidistants de A et B, on va de plus utiliser que
MA=|z—alet MB=|z-1|:

MEAAB & MA=MB
" & |z—al =z -0

7 & |z—a>=]z-0 car les modules sont positifs

" < (z—a)(z—a)=(2=b)(z—b)

7 & (z—a)(zZ—a)=(2—0b)(Z—b) dapres les propriétés de la conjugaison



MeAsg & 2Z—aZ—az+aa=22—bz—bz+0bb

& (b—a)z+ (b—a)z =0bb—aa

Ce qui démontre le résultat souhaité :

MeAape (b—a)z+ (b—a)z =0bb— aa

Dans le calcul précédent, on n’a pas utilisé de propriétés particulieres de A et B, ce sont juste deux points
distincts du plan exactement comme le sont B et C. Il suffit de remplacer a par b et b par ¢ dans I’expression
précédente pour obtenir une équation complexe de Apgc. Ainsi :

M e Apc & (¢—b)z + (c—b)z = cc—bb

Avec le méme raisonnement, on a également :

MeAcas (@—¢)z+(a—c)Z=aa—cc

Remarquons que ’hypothese de ’énoncé, A, B et C non alignés, permet de dire que A, B et C' sont distincts
deux a deux.

Par I’absurde, on suppose que (b —a)(c—a) — (¢ —a)(b—a) = 0. On divise cette relation par (b—a)(b—a)
qui est non nul puisque A et B sont deux points distincts, il vient en utilisant la question 1.(a) :

e R.

c—a E—E_O@c—a_(c—a> c—a

b—a b-a b—a \b—a b—a
— —

Or c— a est affixe du vecteur AC' et b— a celle du vecteur AB, ainsi d’apres la question 2.(b) on en déduit

— —
que les vecteurs AB et AC sont colinéaires. Ceci est absurde puisque A, B et C ne sont pas alignés. On a
démontré que :

(b—a)(c—a)—(c—a)(b—a) #0

— —
Tout vecteur directeur de A op est orthogonal & AB et tout vecteur directeur de Ao 4 est orthogonal & AC.

— —
Or AB et AC ne sont pas colinéaires puisque A, B et C' ne sont pas alignés, ceci montre que les droites
Aap et Aca ne sont pas paralleles d’ou :

Aup et Acy sont sécantes.

Un point M appartient & l'intersection des droites Aap et Aga si et seulement si laffixe z de M vérifie
Péquation de A 4p trouvée a la question 3.(a) et ’équation de Acy déduite a la question 3.(b) :

(b—a)z+ (b—a)z =bb— aa

MEAABHACA@{ @—0)z+(a—c)Z=aa—ce

L’énoncé donne une expression de z, ainsi il va s’agir d’éliminer les Z. Pour ce faire on peut multiplier la
premiere équation par (a — ¢) et la seconde par (b — a) puis les soustraire cela donne :

[(b—a)(a—c)— (@a—¢)(b—a)lz= (bb—aa)(a—c)— (aa — cc)(b— a)



On peut ainsi isoler z :

(bgj aa)(a — ¢) — (aa — c¢)(b — a)

le dénominateur étant non nul d’apres 3.(c)
G-a)a—c) —(@-a)b—a)

abb — aa — beb + aca — aba + bee + a*a — ace

ab — aa — ¢b + ca — ba + be + aa — ac

ab(b —a) + be(c — b) + ca(a — ©)
ab — ba + bc — cb + ca — ac

Un point M appartenant & Aap N Aca a nécessairement pour affixe le complexe trouvé ci-dessus, or on
a vu a la question 3.(d) que les droites A p et Aca sont sécantes. Ainsi Agp et Acg se coupent en un
unique point d’affixe :

_ab(b—a) + be(c — b) + ca(@ —¢)
~ ab—ba+bc—cb+ ca—ac

(f) Par le méme calcul, il existe un unique point d’affixe @ dans Apc N A4p dont 'expression s’obtient en
remplacant a par b, b par c et ¢ par a dans ’expression précédente, cela donne :

S be(¢ —b) + ca(@ —¢) + ab(b — a)
~ bc—cb+ca—ac+ab—ba

On remarque immédiatement que w = W, c’est-a-dire que :

les médiatrices Aap, Apc et Ag 4 sont concourantes en un point  d’affixe w.

B-Droite de Simson

Le but de cette partie est d’étudier l'alignement de 3 projetés orthogonaux selon la position du point que l'on
projette. Ce résultat a été mis en évidence par Simson puis démontré par Wallace en 1799. A noter qu’il existe des
démonstrations géométriques de ce résultat, méme si le point de vue adopté ici est l'utilisation des nombres complexes.

1. Les points A, B et C vérifient les hypotheses de ’étude faite dans la partie précédente. Notons encore ) d’affixe
w le point de concours des médiatrices du triangle ABC'. Le point 2 est équidistant de A, B et C, posons
r=|w—a| =|w—">b] =|w—c|. On remarque que r > 0 puisque par hypothese le triangle n’est pas aplati. Ainsi

a L1
le complexe est de module 1, on considere un de ses arguments o € R, de sorte que :

a—w

=e' < a=w+re.
T

On applique le méme raisonnement pour b et ¢, on obtient également 'existence de (3,7) € R? tels que :

La relation r = |w — a| = |w — b] = |w — ¢| montre que A, B et C se situent sur le cercle de centre Q et de rayon
r. Ce cercle, T, s’appelle le cercle circonscrit au triangle ABC.



2. Utilisons ’écriture trouvée a la question précédente :

b—a = wHre’ — (w4 re)
= r(ezﬂ —e'%) pour continuer la factorisation, on passe & ’angle moitié :
‘atB , f-a _iB-a
= ret 2 (eZ 3 _—e 2 )

= 2irsin (ﬁ ; a)ei#

0 — «

. jotftm i1s . i
= 2rsin e’ 2 en utilisant 7 =¢'2.

Pour continuer ’étude deux cas sont a considérer :

* Si sin (%) > 0, alors :

|b—al = 2Tsin(ﬁ;a)
a+fB+m
2

un argument de b — a est

* Si sin (ﬁ—?a) < 0, en utilisant —1 = €™, on a la réécriture : b — a = —2rsin (6 — a)e"mrﬁ;s#, ainsi :
|b —a] = —2rsin (ﬁ ; a)
o+ [+ 3m

un argument de b — a est 5

Supposons « = 3 [27] alors e = ¢ et d’aprés la question 1. cela montre que a = b. Ceci est exclu puisque A
et B sont distincts. Avec le méme raisonnement pour § et v puis pour « et v, on obtient :

«, 3 et v sont distincts deux & deux modulo 27 I

—_— —
3. (a) Par définition du projeté orthogonal, le vecteur M A" est orthogonal au vecteur BC. Par construction

/ 7 .. < B A~ 7 e, . == ,
A" € (BC) donc BA' est colinéaire & BC' et, de méme, C'A" est colinéaire & BC'. Pour résumer :

|

Q

—_—

MA’ est orthogonal & B
—

BA"  est colinéaire &

—
CA" est colinéaire & BC

| &l

(b) L’idée va étre d’utiliser le méme type de factorisation qu’a la question 2., ainsi il sera aisé de simplifier le
quotient proposé, on a :

c—b=w+re” — (w+rel) =r(e” —F) = 2irsin(

7_6)61‘#
2

- .. - _;at8 N .
en conjuguant cette expression : ¢ — b = —2irsin <¥>e i3 Cette dernidre expression est non nulle
puisque, r étant strictement positif, on a :
a-B:o«:»m(#) :Oﬁgzo ] &y = 8 [2n).

ot



ceci est exclu d’apres la question 2. On peut donc diviser par ¢ — b, on obtient :

c—b 2ir sin(%)ei#
c—b  _2ir sin(%)e‘l%
En simplifiant, on obtient :
c=b_ _ itvte)
c—b

—

(c) Remarquons que les affixes des vecteurs M A, BA', CA" et BC sont respectivement o’ — 2z, @’ — b, a’ —c et

¢ —b. D’apres les résultats obtenus dans la partie A question 2.(a), les relations entre les vecteurs ci-dessus
obtenues & la question 3.(a) se réécrivent :

—

N s PN _ _
MA" est orthogonal & BC <& MA'BC=0 & (d-2)c—b)+( —2)(c=b)=0 (1)

—

N —_ _ .
BA’"  est colinéaire 8 BC < det(BA',BC)=0 & (d —b)(c—b)—(ad —b)(c—b)=0 (2)
C'—A; est colinéaire 3 BC < det(C—A7, B—C)') =0 & (d—c)(c—b)—(d-2)(c—b)=0 (3)

L’expression & obtenir ne posséde plus de terme en a/, c’est pour cela qu’il semble judicieux d’ajouter les
relations (1) et (2), nous obtenons :

2a/(—b) — (b+2)(c—b)+(b—2)(c—b)=0

b zZ—b —-b =
a = —;Z+Z2 xg_g on a bien ¢—b#0
b zZ-b
O — Z; _Z 5 ! (A+7) ceci en utilisant la question précédente.

Pour obtenir I'autre relation souhaitée, on ajoute (1) et (3), on trouve par le méme type de calcul :

; z—{—c_E—E Z-(ﬁJr,y)
a = B 72 e .

On a bien démontré :

(d) Les roles joués par A, B et C sont symétriques, on peut remplacer A par B, B par C, C par A et A’ par
B’ pour obtenir une expression de b'. On remplace enfin A par C, B par A, C par B et A’ par ¢’ pour
obtenir une expression de ¢’. Plus explicitement, on a :




4. (a) Supposons donc M différent de B, c’est-a-dire z # b. D’apres les questions 3.(c) et 3.(d), nous avons :

r_ Z+b_5_bi(ﬁ+v)_<ﬂ_ﬂi(6+a)>
e T Ty 5 ¢ 2 5 ¢
Z—b ,
= 2 (ilBte) _ (ilA+))
2
—b ..
— 22 ezﬂ(ewa_ery)
= Il (@ )

zZ—b ; a0 — 7\ ek
= 2 lﬁ ] ( ) L
] B € sin B e

_ o —
Afin de pouvoir diviser par a’—¢’ remarquons tout de suite que Z # b et sin <T7) # 0 puisque a # v [27].

Par un calcul tout & fait similaire, nous obtenons :

(b) On utilise les expressions obtenues a la question 1. :

ac D —b = @+re ) — @+ re )

= o P —1).

En procédant de méme pour bele—h) _ a, on obtient :

(e'@=Pf) — 1)

ae' @0 _p
—a GG

hetla—h)

Il
g€ g




(c) On utilise la-aussi les expressions de a et b trouvées dans la question 1. :

abe' P —ab = (@+re ) (w4 re®)e P — (W re) (@ + re” )
= wwe P 4 el 4oppeTie OB 42 i — rwe™ P — re’® — p2eieh)

= (ww— TQ)(ei(a_ﬁ) —1).

=58
in(155
. 1l s’agit d’examiner en détail 'expression trouvée a la question 4.(a), déja le facteur — EQEW; est réel, ainsi :
sin( =5
2
/ / > _ = > _ =
cd—b ] a-BZ—a _a=BZ—a
— R & ez —cR & 2 —=e "2
a —c zZ—b zZ—b z—b

” & Pz _a)(z—b) =(z—a)(z—D)
K & (€0 1)z — (@@ —b)z — ('@ — )z + abe’ ) —ab =0
et avec 4.(b) et 4.(c) < (@ —1)zz — (/P — D@z — (/@) — Dwz + (ww — r?) (@ —1) =0

” &S 2Z-—wr—witww—1r2=0

La derniere équivalence étant obtenue en divisant par ele=hf) _q qui est non nul puisque « et § sont distincts
modulo 27. Ainsi :

d-b
ﬁER@zE—wz—wE—Fww—?ﬁ:O
a —c¢

. Traitons pour commencer M = B exclu dans les deux questions précédentes. On procede par double implication :
(=) On suppose A', B et ' alignés. Si M = B, il est clair que M appartient au cercle circonscrit au triangle
ABC.

(<) Réciproquement, on suppose que M € I'. Si M = B alors, par construction, A’ = C' = B, il est donc clair
que A', B’ et C’ sont alignés.

Ce qui démontre 1’équivalence souhaitée dans la cas ou M = B.

Plagons-nous a présent dans le cas général ou M # B, ’étude faite aux questions 4. et 5. s’applique. Le point
crucial est de remarquer que 1’équation de la question 5. se réécrit :

Z-wz—wItuwo - =08 (z-w)EZ-w) =" (z-wiE-w) =r'slz-wf=r.

On a ainsi en vertu de la caractérisation de la colinéarité obtenue dans la partie A :

/ /

A’ B" et C' sont alignés < ERe|z—wP=r’e MeTl.

C J—
a —cd
D’ou le résultat souhaité :

A’ B" et C’ sont alignés si et seulement si M appartient & I‘I

Voici un graphique illustrant cette situation, la droite de Simson est notée D.




C-Droite de Steiner

Le but de cette partie est de mettre en évidence une nouvelle configuration géométrique d’alignement qui se déduit
de la précédente via une homothétie. Elle utilise de facon cruciale les résultats et calculs de la partie B.

—_—
1. L’expression de h étant symétrique en «, § et v, nous allons nous contenter de vérifier que AH est orthogonal
N —> =77 N _) 7 N - = 7 .
a BC', on aura de facon analogue BH est orthogonal & C A et C'H est orthogonal & AB. Cela démontrera bien
— —
que H appartient aux trois hauteurs du triangle ABC. L’affixe de AH est h — a et 'affixe de BC' est ¢ — b, en
utilisant la caractérisation de I'orthogonalité démontrée dans la partie A, on a :

% % p— J—

AH 1 BC < (h—a)(c—b)+(h—a)(c—b)=0
7 & e +eMre™ —e )+ [r(e™ +e (e —e’)] =0
” PN TQ[ei(B—’Y) 141 —e B LB _ 1 41— ei(ﬂ—’)/)] -0

” < 0=0.

H d’affixe h = w + (e + € + ¢7) est Porthocentre du triangle ABC

2. Notons Py le projeté orthogonal de A sur (BC'), on a (AP4) qui est ainsi une hauteur du triangle ABC. D’apres
la question 3.(c) de la partie B, on connait une expression de l'affixe p4 de Py :

a+b_6—5€i(5+,y): Q+C_E—Eei(ﬂ+,y)
2 2 2 2 ’

pA =



Pour obtenir cette expression, on a simplement remplacé z par a puisque 'on projette le point A et non plus le
point M.

Notons S4 le symétrique orthogonal de H par rapport a (BC'), comme Py est aussi le projeté orthogonal de H
— —

sur (BC),on: HSy = 2HP,.

Voici un dessin représentant la situation :

\
\

On traduit cette derniere relation avec les affixes, en notant s 4 Daffixe de S4, on a s4—h = 2(pa—h), ¢’est-a-dire
en utilisant ’expression de p4 obtenue ci-dessus :

sA4 = 2pa—nh
= a+c—(@—0)eP) —w—r(® 4 + )
= wHre®+w+re — (re” — re” ) BN - p(e 4 €8 + )
= w—relBtr—a),

Au cours de ce calcul, on a utilisé : a = w + e’ et ¢ = w + e’ relations trouvées au début de la partie B.
On a alors |[s4 — w| = r ce qui montre que S4 € I'. Toujours d’apres la symétrie entre A, B et C, on a :

les symétriques orthogonaux de H par rapport aux trois cotés du triangle appartiennent a I’ I

3. (a) Par construction, on a :

— —
A’ est le milieu de [MA"] & MA"=2MA
— —
B’ est le milieu de [MB"] & MB'"=2MDB’
— e
C' est le milien de [MC"] & MC" =2MC’

—_— —
On a aussi évidemment MM = 2M M. Ainsi :

I’homothétie de centre M et de rapport 2 transforme M en M, A" en A”, B' en B” et C' en C”I

10




(b) On note a”, b" et ¢ les affixes respectives de A”, B” et C”, la traduction & I’aide des nombres complexes
de 'homothétie précédente est : @’ — z = 2(a’ — z), c’est-a-dire @ = 2a’ — z. De méme b” = 20 — z et
¢’ = 2¢ — z. Distinguons deux cas :

x Si A” = B”, alors il est clair que A”, B” et C” sont alignés.
xSi A"+ B" ona:
d—ad" 2 —2—-(2d —2) J—d

= = R
' —a" 20 —z—(2d—2) UV —d <

"no_n

a ..
o € R signifie

car on sait, d’apres la partie B, que A’, B’ et C’ sont alignés puisque M € I'. Ainsi T

¥alll " !
que A"C" et A"B" sont colinéaires.

Les points A”, B” et C” sont alignés'

Voici un dessin représentant la situation, la droite de Steiner est notée A :

¢) Si M = B le résultat est clair puisque dans ce cas = = B et la droite de Steiner de B est la droite
Si M = B le résultat est clair pui d A" = C" = B et la droite de Steiner de B est la droit
(BB") qui passe par H puisque c¢’est une hauteur. Plagons-nous dans la suite de cette question dans le cas

— —_—
ot M # B, on a alors A’ # (" d’apres la question 4.(a) de la partie B. Le vecteur A”C” = 2A'C’ est donc

11



non nul, ¢’est un vecteur directeur de la droite de Steiner de M qui est parallele a la droite de Simson de
— —

M. 1l reste & démontrer que A”H est colinéaire & A”C, ainsi H appartiendra & la droite de Steiner de M.
On a d’apres les calculs faits a la question 4.(a) de la partie B :

d'—ad"=2(d —d)=2i(b—7z)sin (L 5 7) iBeis
D’autre part d’apres I’étude menée dans le début de la partie C, on a :

h—d" =w+r(E®+eP +e)—2d + 2

Comme M € T, on peut trouver avec un raisonnement analogue a celui de la question 1. de la partie B,
0 € R tel que z =w + re’e, de plus d’apres la question 3.(c) de la partie B, on a :

I —d" = 2P gin (%) @+re ™ -G —re ™) on passe & 'angle moitié :
(G — 0—
= 2ire'®*t3+3)sin (a 5 7)67 i7" ) (2i sin( B))
_ — O\ atpie
= 47“Sil’l(a 7)sin (ﬁ )e’ =
2 2
Simplifions aussi A — a”, cela donne :
h—d' = w+r(E® +e?+e")—z—c+(z—-0)eP) 4

= wHre +reP +re” —w—re” + (@ +re? —w—re”)e! B+
_ r(eia Jrezﬂ +6i(,6’+"/—9) _ 62',8)
o - -0
L ey (%)
h—a" COS(OlJrﬂJr’Y 9)

—a’ 2sin(*52 )sm(ﬁ

H est bien sur la droite de Steiner de M '

" "~
On a ainsi : € R, donc A" H est colinéaire a A”C". Ce qui démontre que :

Robert Stmson est un mathématicien FEcossais du 18ieme siécle. Il a notamment traduit et expliqué les travaux
géométriques d’Fuclide. Il fut également le premier a remarquer que le quotient de deux termes consécutifs de la suite
de Fibonacci tend vers le nombre d’or.

Jacob Steiner est un mathématicien Suisse du 19ieme siecle, a 14 ans il ne savait pas lire et ne s’initia aux
mathématiques qu’a 17 ans. Les travaux de Steiner concernent essentiellement la géométrie.
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