Chapitre 3: Rappels sur les fonctions

- 1-Ensemble de dérivabilité et dérivée de $h: x \mapsto \sqrt{\cos^2(x) + 2}$.
- 2-Soit $u : \mathbb{R} \to \mathbb{R}$. Quelle condition doit vérifier u afin que tan(u) soit dérivable sur \mathbb{R} ? Donner une expression de sa dérivée.

3-Calculer la dérivée n-ième de $f: x \mapsto \ln(1+x)$ définie sur $]-1,+\infty[$, pour $n \in \mathbb{N}^*$.

1-Ensemble de dérivabilité et dérivée de $h: x \mapsto \sqrt{\cos^2(x) + 2}$.

Réponse : Pour tout $x \in \mathbb{R}$, on a : $\cos^2(x) + 2 > 0$ et la fonction racine carrée est dérivable sur \mathbb{R}_+^* . Par composition, h est définie et dérivable sur \mathbb{R} . On pose $f: x \mapsto \cos^2(x) + 2$, on a : $f': x \mapsto -2\sin(x)\cos(x)$. La dérivée de $g \circ f$ est $f' \times g' \circ f$, cela donne ici :

$$\forall x \in \mathbb{R}, \ h'(x) = \frac{-2\sin(x)\cos(x)}{2\sqrt{\cos^2(x) + 2}} = \frac{-\sin(x)\cos(x)}{\sqrt{\cos^2(x) + 2}}$$

2-Soit $u : \mathbb{R} \to \mathbb{R}$. Quelle condition doit vérifier u afin que tan(u) soit dérivable sur \mathbb{R} ? Donner une expression de sa dérivée.

Réponse : La fonction $\tan = \frac{\sin}{\cos}$ est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$. Elle est dérivable en tout point de son ensemble de définition. Si la fonction u est à valeurs dans $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$, on peut en déduire par composition que $\tan(u)$ va être dérivable sur \mathbb{R} . Un calcul direct montre que $\tan' = 1 + \tan^2 = \frac{1}{\cos^2}$. Ainsi :

$$\tan(u)' = u' \times (1 + \tan^2(u)) = \frac{u'}{\cos^2(u)}$$

Chapitre 3 : Rappels sur les fonctions

3-Calculer la dérivée n-ième de $f: x \mapsto \ln(1+x)$ définie sur $]-1,+\infty[$, pour $n \in \mathbb{N}^*$.

Réponse : La fonction f est dérivable n fois sur $]-1,+\infty[$ pour tout $n\in\mathbb{N}^*$. On calcule les premières dérivées pour trouver une formule de récurrence.

$$f': x \mapsto \frac{1}{1+x}$$

$$f'': x \mapsto -\frac{1}{(1+x)^2}$$

$$f^{(3)}: x \mapsto \frac{2}{(1+x)^3}$$

$$f^{(4)}: x \mapsto -\frac{6}{(1+x)^4}$$

Démontrons par récurrence sur $n \in \mathbb{N}^*$:

$$\mathcal{H}_n : f^{(n)} : x \mapsto \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$$

- La formule est vraie pour n = 1.
- On suppose que la formule est vraie au rang $n \in \mathbb{N}^*$, on dérive pour obtenir :

$$f^{(n+1)}: x \mapsto -\frac{(-1)^{n-1}(n-1)! \times n}{(1+x)^{n+1}} = \frac{(-1)^n n!}{(1+x)^{n+1}}$$

Ce qui achève la récurrence et démontre la formule attendue.