Chapitre 3: Rappels sur les fonctions

- 1-On note $f: x \mapsto \sin(x)$ définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Justifier que f est une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1,1]. Quel est le sens de variation de f^{-1} ?. Sur quel ensemble f^{-1} est-elle définie? dérivable?
- 2-Soit $h: x \mapsto \ln(2x-4)$ définie sur $]2, +\infty[$. Démontrer que h est une bijection de $]2, +\infty[$ vers un intervalle à préciser. Expliciter h^{-1} .
- 3-Soit $f: I \to J$ une bijection strictement croissante. Démontrer que f^{-1} est strictement croissante sur J.
- 4-Soit $f: I \to J$ une bijection impaire. Démontrer que f^{-1} est impaire.
- 5-Soit f et g deux bijections de $\mathbb R$ dans $\mathbb R$. Démontrer que $g \circ f$ est une bijection de $\mathbb R$ dans $\mathbb R$. À quoi est égal $(g \circ f)^{-1}$?

Chapitre 3 : Rappels sur les fonctions

1-On note $f: x \mapsto \sin(x)$ définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Justifier que f est une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1, 1]. Quel est le sens de variation de f^{-1} ?. Sur quel ensemble f^{-1} est-elle définie? dérivable?

Réponse : • La fonction f est continue et strictement croissante sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, on a : $f\left(-\frac{\pi}{2}\right) = -1$ et $f\left(\frac{\pi}{2}\right) = 1$. Ainsi f réalise une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ vers [-1,1].

 \bullet La fonction f^{-1} est strictement croissante sur [-1,1] comme réciproque d'une application strictement croissante.

• La fonction f est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, la fonction $f'=\cos s$ 'annule en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$. Ce qui démontre que la fonction f^{-1} est dérivable sur $]-1,1[.\left(\sin\left(-\frac{\pi}{2}\right)=-1\right)$ et $\sin\left(\frac{\pi}{2}\right)=1$).

2-Soit $h: x \mapsto \ln(2x - 4)$ définie sur $]2, +\infty[$. Démontrer que h est une bijection de $]2, +\infty[$ vers un intervalle à préciser. Expliciter h^{-1} .

Réponse : La fonction h est dérivable sur $]2, +\infty[$ et :

$$\forall x \in]2, +\infty[, h'(x) = \frac{2}{2x-4} > 0$$

La fonction h est donc strictement croissante sur $]2,+\infty[$, elle est continue sur cet intervalle. De plus $\lim_{x\to 2^+}h(x)=-\infty$ et $\lim_{x\to +\infty}h(x)=+\infty$. D'après le théorème de la bijection, h réalise une bijection de $]2,+\infty[$ dans $\mathbb R$.

On cherche h^{-1} avec la méthode vue en cours. Soit $x \in]2, +\infty[$ et $y \in \mathbb{R}$, on a :

$$y = h(x)$$
 \Leftrightarrow $y = \ln(2x - 4)$
 \Leftrightarrow $e^y = 2x - 4$
 \Leftrightarrow $\frac{1}{2}(e^y + 4) = x$

On en déduit que $h^{-1}: y \mapsto \frac{1}{2}(e^y + 4)$, définie sur \mathbb{R} .

3-Soit $f: I \to J$ une bijection impaire. Démontrer que f^{-1} est impaire.

Réponse : • Soit $y \in J$, il existe $x \in I$ tel que y = f(x). On a :

$$-y = -f(x) = f(-x)$$

Ce qui démontre que $-y \in J$ et on sait que J est symétrique par rapport à 0.

Avec les mêmes notations, on a :

$$f^{-1}(-y) = f^{-1}(-f(x)) = f^{-1}(f(-x)) = -x = -f^{-1}(y)$$

La fonction f^{-1} est impaire.

4-Soit $f: I \to J$ une bijection strictement croissante. Démontrer que f^{-1} est strictement croissante sur J.

Réponse : Soit $(y, y') \in J^2$ avec y < y'. Supposons par l'absurde que $f^{-1}(y) \ge f^{-1}(y')$, par croissance de f, on obtient :

$$f(f^{-1}(y)) \ge f(f^{-1}(y'))$$
 c'est-à-dire $y \ge y'$

C'est absurde, on en déduit que : $f^{-1}(y) < f^{-1}(y')$, ce qui démontre la stricte croissance de f^{-1} .

5-Soit f et g deux bijections de \mathbb{R} dans \mathbb{R} . Démontrer que $g \circ f$ est une bijection de \mathbb{R} dans \mathbb{R} . À quoi est égal $(g \circ f)^{-1}$?

Réponse : Soit $z \in \mathbb{R}$, comme g est bijective il existe un unique $y \in \mathbb{R}$ tel que z = g(y). Comme f est bijective, il existe un unique $x \in \mathbb{R}$ tel que y = f(x). Finalement, on a démontré que pour tout $z \in \mathbb{R}$, il existe un unique $x \in \mathbb{R}$ tel que :

$$z = g(y) = g(f(x)) = g \circ f(x)$$

 $g \circ f$ est une bijection de \mathbb{R} dans \mathbb{R} .

7/8

Soient $(x,z) \in \mathbb{R}^2$, on a :

$$z = g \circ f(x) \Leftrightarrow g^{-1}(z) = f(x) \Leftrightarrow f^{-1} \circ g^{-1}(z) = x$$

On en déduit que la bijection réciproque de $g \circ f$ est $f^{-1} \circ g^{-1}$. D'où la formule :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$