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L’usage de la calculatrice est interdit. Les raisonnements présentés devront étre soigneusement justifiés et détaillés,
quelques points seront dédiés a la présentation, l'orthographe et la propreté de votre copie. En particulier, il vous est
demandé de souligner les résultats obtenus. Il n’est pas nécessaire de répondre a l’ensemble des questions pour avoir
une bonne note.

Echauffement

1. (a) Soit z = x + iy avec (z,y) € R% Par définition de I'exponentielle complexe, on a :
e* = e

(b) Soit Z € C*, trouvons-lui un antécédent par f. Le nombre complexe Z étant non nul, il est possible de
écrire Z = re' avec r € R% et # € R. On cherche alors z = & + iy avec (z,y) € R? tel que :

On voit qu’il est possible de choisir z = In(7) et y = #. On peut faire la vérification :

F(n(r) + i6) = MO+ — (M0 _ .00 — 7

f est surjective.

(c) L’application f n’est pas injective, en effet : f(0) = f(2im) = 1.

f n’est pas injective.

2. C’est une équivalence & démontrer, nous allons procéder par double implication :
(=) On suppose que (ANC)C (BNC)et (A\C) C (B\C), démontrons que A C B :
Soit x € A, il y a deux cas :
e soit x € C, alors z € AN C. Or, par hypothése ANC =BNC doncz e BNC. Dou x € B.
e soit x ¢ C alors 2 € CgC. Ce qui nous donne que z € ANCgrC = A\ C. Or, par hypothése
A\ C C B\ C. Ce qui donne z € B\ CgC, en particulier z € B.
Dans les deux cas ¢ € B, ce qui démontre que A C B.

(«<=) Reéciproquement, supposons que A C B et démontrons que (ANC) C (BNC)et (A\C) C (B\C).
o Il est clair que (ANC) C (BNC) puisque A C B.
e De méme, on a bien (ANCgC) c (BNLgC) puisque A C B. Cest-a-dire (A\ C) C (B\ O).

{ (AnC)c (BNCQO) e AcB

(A\C) C (B\CO)

3. On suppose que AN B = CN D, démontrons que : (AU (BNC))N(AU(BND))=A. On ne va pas procéder
par double inclusion mais directement par égalité :

(AU(BNC)N(AU(BND)) = AUu((BNnC)N(BND)) en utilisant la distributivité

= Au(BNnCND) car BNCNBND=BnNnCND
= AU(BNANB) carCND=ANB

= AU(BNA)

= A car (BNA)C A

Dans tout ce calcul, on a utilisé ’associativité de I'intersection.

ANB=CND = (AU(BNC))N(AU(BND)) = A
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f+ R —

5 n’est ni surjective ni injective.
T = x

4. (a) Cest faux, 'application
(b) C’est vrai, d’aprés le cours tout nombre complexe posséde une racine carrée. Plus précisément un nombre
complexe non nul posséde exactement deux racines carrées et 0 posséde une racine carrée, lui-méme.

(c) Clest vrai. Soit E et F' deux ensembles et A C E, on considére une application injective f de E dans F.
C’est-a-dire que tout élément de F' admet au plus un antécédent dans E et donc au plus un antécédent
dans A puisque A C E. Ainsi f|4 est injective.

(d) Clest faux, il est possible que g o f soit bijective. Par exemple :

f: N - N
n — 2n
g N —- N
n . .
— s1 n est pair
n n g 1 . . .
5 SslI  m est 1mpair

Il est clair que f n’est pas surjective et que g n’est pas injective car g(0) = g(1).
Pour tout n € N, go f(n) = g(2n) = n, ainsi g o f = Idy est bien une bijection.
5. On suppose que f o go f est bijective. Nous allons démontrer dans un premier temps que f est bijective.

e Montrons que f est injective. Soient (x,z') € E? tels que f(z) = f(z'), on compose par f o g pour obtenir
flg(f(2)) = f(g(f(2"))). Or fogo f est bijective donc en particulier injective, on en déduit que z = 2’. D’ou
I'injectivité de f.

e Montrons que f est surjective. Soit y € F, cherchons-lui un antécédent. L’application f o go f est bijective
donc en particulier surjective, ainsi il existe x € FE tel que f(g(f(x))) = y. On voit que g(f(x)) est bien un
antécédent de y par f. D’ou la surjectivité de f.

Finalement, f est bijective et en particulier f~! existe. Il reste a écrire que :
_ =1 -1
g=f"o(fegof)of

Les trois applications mises en jeu dans le membre de droite sont bijectives ainsi g est bijective comme composée

de bijections.
f ogo f bijective implique g bijective.
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Exercice 1

1. L’équation caractéristique s’écrit X2 +b =0, il y a trois cas :
» Si b > 0, Péquation caractéristique posséde deux solutions complexes conjuguées : X1 = ivb et Xo = —iv/b,
dans ce cas I’ensemble des solutions est :

y : R - R
{ x — Acos(Vbx) + Bsin(vbz) (

A, B) GRQ}

» Si b= 0, ’équation devient y” = 0 ainsi ’ensemble des solutions est :

y R — R 2

» Si b < 0, 'équation caractéristique posséde deux racines réelles : X7 = v—b et Xo = —v—b dans ce cas
I’ensemble des solutions est :

y : R — R 9
A,B)eR
{ [ Ae\/Tbx +B€—Jjbx ) ( ) ) € }

2. On reprend les solutions trouvées dans les questions précédentes en cherchant les réels A et B tels que

y(0) =y(1) =0.
» Si b > 0, une solution de 'équation 3 + by = 0 est définie sur R par y : © — Acos(Vbz) + Bsin(vVbz) o
(A, B) € R?.

y(l) = 0 Acos(Vb) + Bsin(vb) = 0 Bsin(vb) = 0

Dans cette question, on cherche des solutions non nulles & cette équation. Comme on a nécessairement A = 0, il
faut que B soit non nul afin d’avoir une solution non nulle & cette équation et dans ce cas sin(\/l;) =0,ona:

sin(Vb) =0 Ik eZ, Vb=kr < Ik e Z, b=k*r?

Dans ce cas, on a une solution non nulle définie sur R par y : x — Bsin(knz) ou k € Z* et B € R*.
» Si b= 0 une solution de 'équation y” + by = 0 est définie sur R par y : z — Az + B o (A4, B) € R?.

yo) =0 _f B =0 _[A =0
y(l) = 0 A+B = 0 B =0
Dans ce cas seule la fonction nulle vérifie ces conditions.
» Si b < 0 une solution de I’équation 3”4+ by = 0 est définie sur R par y : = AeV=b 4 BemV=be o (A,B) € R
y(0) = 0 A+ B =0 B = A B - -4
y(1) = 0 AVt 4 BeVTE = 0 AP AV = 24sh(vV—b) = 0

La fonction sh s’annule uniquement en 0, or dans ce cas b # 0 ainsi 2Ash(v/—b) = 0 implique que A = 0 et par
suite B = 0. Toutes les solutions trouvées sont nulles.
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4.

En résumé ’ensemble des réels b tels qu’il existe une solution non nulle & I’équation proposée est :

(K22, k € Z*) I

Ces solutions non nulles sont alors les fonctions :

, (k,B) € Z* XR*}

Remarquons tout d’abord que la fonction z est dérivable deux fois sur I puisque c’est la somme de y” qui est
dérivable deux fois sur I car y est dérivable quatre fois sur I et de uy qui est dérivable deux fois sur I.

De plus 2" = (y")" 4+ uy” =y 4+ uy”. Sur Vintervalle I, on a :
2z solution de z”4+wvz = 0 < y solution de y(4)+uy"+v(y"+uy) = 0 < y solution de y(4)+(u+v)y"+uvy =0 (%)

Nous devons trouver une condition nécessaire et suffisante sur (u,v) € R? telle que y soit solution sur I de
yW + 2ay” +y = 0. Cette équation différentielle a les mémes solutions que 'équation différentielle (J) si et
seulement si les coefficients sont égaux, c’est-a-dire si et seulement si :

{ZJU i ?a & u et v solutions de X2 —2aX +1 =0

Le discriminant de cette équation est A = 4(a2 —1) qui est strictement positif puisque a > 1. Les deux solutions
sont X1 = a+ vaz—1et Xo = a— Va?—1. Les valeurs de u et v recherchées pour que I’équivalence soit

vérifiée sont :
{u,v} ={a+ Vva*>—-1,a— va? -1}

Il n’y a pas de moyen de différencier u et v.

(a) On utilise les formules trouvées a la question précédente :
atVa?-1=kr’oukecZ & a-k*r*=+Va®—-1oukecZ*
& a? =2k + kit =d? —1on ke 2

& 2ak’n? =1+ k7t ou k € Z*

14 k7t
& g=-—-——oukecZ*
2k272
. . 1+ kit
u=k>7% ou v = k%72 avec k € Z* si et seulement si ¢ = —————
2k272
. 1+ kArd .
(b) On suppose que pour tout k € Z*, a # e alors d’aprés la question précédente, u et v ne sont pas
s

égaux a k272 avec k € Z*. On suppose que y est une solution de équation (E) et on note toujours z la
fonction définie sur I par z = y” +uy. On a z(0) = y”(0) + uy(0) = 0 et z(1) = y"(1) + uy(1) = 0. Ainsi la
fonction z est solution de :
2 vz=0
{ 2(0)=2(1)=0
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Comme v # k?72 pour tout k € Z*, d’aprés la question 2. cela implique que z est la fonction nulle. Or
z =y + uy donc y vérifie I'équation :
{ v +uy=0
y(0) =y(1) =0

Or u # k27 pour tout k € Z*, toujours d’apres la question 2., cela implique que y est la fonction nulle.

1+ k*nd

Si tout k € Z*, —r -
i pour tou a # 5722

alors la seule solution de (E) est la fonction nulle.

D’apres la question 4.(a), on sait que u = k*7? ou v = k?r2, considérons ces deux cas :

» Si v = k>r? alors z est solution de :
2 +vz=0
z2(0)=2(1)=0

D’aprés I’étude faite a la question 2., cela signifie que la fonction z est définie sur I par z :  — Bsin(knx)
ol B € R. Il s’agit a présent de trouver les fonctions y qui vérifient :

. 1
Y +uy =z y" 4+ uy = Bsin(kmx) v’ + y = Bsin(kmz) (k)
y0) =y =0 Ty =ym=0 7 K
y(0) =y(1) =0
. . y 1
Ceci puisque d’aprés la question 3., on a uv = 1 ainsi u = 22
™
Les solutions de I’équation homogéne sont les fonctions définies sur I par y : x — « cos <k£> + Bsin (ki)
0 0

ot (a, B) € R?. 1l reste a trouver une solution particuliére de 'équation (s %), on la cherche sous la forme
yo : & — psin(kmz) ot u € R. La fonction yo est dérivable deux fois sur I et yf : z — —pk?n? sin(kmz).
Pour tout x € I, on a :

psin(krz) = Bsin(krx)

1
yh () + uyo(z) = Bsin(krz) < —upk’n?sin(krz) + 22

& ( — uk*m 4+ p ) sin(knx) = Bsin(knx)

k272

Or, il existe x € [0,1] tel que sin(kmz) # 0, ainsi :

1 1
2_2 _ 2.2\ _
—pk T +uk27r2—B & u<k27r2—k:7r)—B
& p=———"7-—— (4)
k:217r2 — k?m?
1 — kir? 1
On a bien Erche k*n? = TW;T # 0 puisque 7 ne peut étre égal a = avec k € Z*.

Il reste a interpréter ce que l'on vient d’obtenir, B est un réel arbitraire, ainsi quand B décrit R la relation

(A) démontre que p décrit R.

On fait la somme d’une solution particuliére et des solutions de I’équation homogeéne, les solutions sur I de

(Y% ) sont les fonctions : y : x — acos (%) + [sin (%) + psin(krz).

Un calcul rapide montre que les conditions y(0) = y(1) = 0 imposent o = = 0.

1+ kit
2k2m2

{y:[—)R ,/LE]R}

En résumé s’il existe k € Z* tel que a = , les solutions de 1’équation (F) sont :

xr — psin(krx)
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1
» Si v = ——— alors z est solution de :
k22
' vz=0
2(0)=2(1)=0
D’aprés la question 2., z est nécessairement la fonction nulle puisque v = ) ne peut s’écrire sous la
T
1
forme k272 ou k' € Z. En effet si tel était le cas, on aurait 74 = ce qui est absurde car 7 n’est pas

k227

rationnel.

Comme z est la fonction nulle, y est solution de :

{ y”—i—uy:O
y(0) =y(1) =0

avec u = k*mw? puisque v = et uv = 1. Toujours d’aprés la question 2., cela implique que y est la

k22
fonction définie sur I par y : ¢ — Bsin(knz) ou B € R.

On trouve le méme résultat que dans le cas précédent puisque les fonctions solutions de (F) sont :

y + I - R
{ xr — Bsin(knm:)’BER}
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Exercice 2

Le but de cet exercice est principalement de vous exercer aux calculs sur les nombres complezes.

1. Il s’agit de vérifier, dans les trois cas, la condition de 1’énoncé : ad — bc # 0.
iz —9
L,. Ses coefficients sont a = —i, b= -2, ¢ =1et d =44, on a :

e La fonction f peut se réécrire f : z —
z 441

—ix4i—(-2)x1=6#0.
e Dans le cas de g, les coefficients sont a =1, b = —i, ¢ =1 et d = i, ainsi ad — bc =i — (—i) = 2i # 0.
e Pour h,onaa=1i,b=1i,c=—-1letd=1doncad —bc=1i—(—i)=2i #0.

f, g et h sont des homographies I

2. Soit z € U \ {1}, nous allons démontrer que h(z) = h(z), ce qui démontrera bien que h(z) € R d’aprés la
caractérisation d’un réel a ’aide du conjugué. La principale propriété que l'on va utiliser dans le calcul a venir

1
est que pour tout z € U \ {1}, — = % puisque 2Z = |z|?> = 1. Pour tout z € U \ {1} :
z

Z2+1 241
B z—l_zl—z_h(z)

.1+z> -1+2 1+z 1+

) T T T iz T C

h(z) = (

W[ =

~
on a multiplié par Z

Vze U\ {1}, h(z) eR

3. Donnons nous pour cette question z € D, il s’agit de démontrer que h(z) € P, c’est-a-dire que Zm(h(z)) > 0.
Pour cela, une méthode consiste a utiliser la forme algébrique de z, posons z = z+iy ou (z,y) € R?. Remarquons
également que z # 1 puisque |z| < 1, ainsi le calcul de h(z) a un sens. En multipliant le dénominateur par la
quantité conjuguée, on a :

1+z+iy _Z,(1+:n+iy)(1—:n+iy) o ol—a? -y 420y

=y A (R R R (o R G S
Or par hypothése z € D, donc |z| < 1, ce qui implique que |z|*> = 2% + »* < 1 ou encore 0 < 1 — 2% — y%. Ceci
permet de conclure puisque :

Im(h(z)) = =5 =% g
m(h(z)) = ——F—"—
(1—=z)?+y?

Vze D, h(z) e P

4. Soit z un nombre complexe différent de 1 :

142
h(z) ==z )
(2) T
7 & i+4iz=2z— 2%, cette équivalence est correcte car 1 n’est pas solution
? e 24 (i-1)z2+i=0

On reconnait une équation du second degré a coefficients complexes. Le discriminant de ’équation est

A=(i— 1)2 — 44 = —6i, on applique la méthode vue en cours pour trouver les racines. On recherche un nombre
complexe § tel que 62 = A avec § = x + iy ol (x,y) € RR?, on obtient de facon usuelle le systéme :

22—y =0
2xy = —6
2+ y2 = 6
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Les équations 1 et 3 permettent de trouver 22 = 3 et y? = 3 et ’équation 2 permet de dire que z et y sont de
signes opposés. Ainsi, on peut choisir § = v/3 — iv/3 et les deux solutions de 'équation du second de degré sont

_1+VB—i(1+ V) ot 2y 1—V3+i(—14+3)
2 2

1+v3—i(1+3) o Lo VBHI(=14V3)
2 2

21

Les solutions de 1’équation h(z) = z sont

5. Donnons-nous Z € C et tentons de résoudre I’équation h(z) = Z. Pour z # 1 :

1+2
h(z):Z@i%:Z<:>i+iz:Z—zZ<:>z(i—l—Z):Z—i
Remarquons & ce stade que si Z = —i I'équation devient 0 = —2¢ ce qui est contradictoire. Dans la suite, on
Z —i
suppose donc Z # —i et on achéve la résolution de I’équation en obtenant : z = - 7
i

VZ € C\ {—i}, Z a un unique antécédent par hI

Ce qui démontre que h induit une bijection de C\ {1} dans C\ {—i}. La bijection réciproque a été trouvée lors
du calcul que 'on vient d’effectuer ot 'on a exprimé z en fonction de Z. On a :

=t C\{-i} — C\{ll}
A — Z =i

1+ Z

6. Soit z € R, démontrons que |g(z)|*> = g(2)g(z) = 1 ainsi on aura bien g(z) € U.

car z est réel donc z =%

VzeR, g(z) eU

7. Soit z € P, c’est-a-dire que Zm(z) > 0, on doit démontrer que |g(z)| < 1. Pour cela, on effectue le calcul suivant :

— z—1 Z+1

z+1 zZ—1

2Z+14+i(z—2)
2Z+14+1i(Z - 2)

Z+ 14 (2L
= Zf+ ks Z( Z m(z car z — z = 2iZm(z)
2Z+1—1i(2iZm(z))

 2z2+1-2Im(z) <1
22+ 14 2Im(2)
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Ce quotient est en effet inférieur a 1 puisque 2z + 1 — 2Zm(z) < 2Z + 1 + 2Zm(z) car Zm(z) > 0. Finalement,
on a démontré que g(2)g(z) = |g(2)|*> < 1 donc |g(2)| < 1.

Vz€e P, g(z) € D

8. Soit z € C\ {—4i}. Remarquons que f(z) = 0 si et seulement si z = 2i. Ainsi pour z = 24, f(2) est réel. Excluons
ce cas par la suite puisque 1’on va se servir d’un argument de f(z) :

f(z) eR* < arg(f(2)) =0 [7]

2 —21
K & —1 =0
arg( Zz+4i) [7]

? & arg(—i) + arg(z - Qi) =0 [n]

z+ 41
. o 7T+ <z— z) (]
—— +ar =
2 & z 4+ 41 T
, o (z—2i> W[]
ar = —
S\Crw) 2

Notons A le point d’affixe 2¢, B le point d’affixe —4i et M le point d’affixe z. D’aprés la relation vue en cours
entre argument et angle, on a :

[r] avec M # A et M # B

f(z)ER*@arg(z_%) T AM

e

T
2 2

La condition M # A vient du fait que I'on a exclu le cas z = 2i au début du calcul et la condition M # B vient
du fait que la fonction f n’est pas définie en z = —44.

C’est équivalent & dire que M décrit le cercle de diamétre [AB] privé de A et de B. On doit pour finir ’étude
ajouter le point A a I’ensemble recherché puisque si z = 2i alors f(z) = 0 qui est bien un nombre réel.

Le lieu géométrique recherché est le cercle de centre — i et de rayon 3 privé de B I

9. On proceéde de méme qu’a la question précédente, en prenant z € C\ {—4i, 2i} :

T z— 21 T
arg(/()) = 5 (2] & ang( i) =7 [2n]
., o 7T+ (z—2i) 0 2]
I _T
o T\ i) T2 T
z— 2
” — 2
o a2 <o

On reprend les mémes notations qu’a la question précédente en posant M d’affixe z, A d’affixe 2i et B d’affixe
—4i. La derniére égalité obtenue équivaut a dire que AM et BM ont la méme direction et un sens opposé. C’est
équivalent a M €]AB]J, en se souvenant que l'on a exclu au départ les cas M = A et M = B.

Le lieu recherché est le segment ouvert |AB]
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Exercice 3

La principale difficulté de ce probléme est le niveau d’abstraction. En effet, [’étude menée concerne certains sous-
ensembles de ’ensemble des sous-ensembles de E. Ces sous-ensembles du type (A) sont plus communément appelés
des filtres. Les filtres sont un outil abstrait pour généraliser la notion de limite, mais [’objet du probléme est plutot
d’étudier les propriétés élémentaires de ces objets que leur utilisation poussée.

1. (a) On a immédiatement :

P(E) = {0,{a},{b}, {c},{a,b},{b,c},{a,c} {a,b,c}}

(b) i Fj n’est pas du type (A) car la condition (A;) n’est pas vérifiée.
ii. F3 n’est pas du type (A) car ) € Fa ce qui contredit la condition (Ay).
iii. F3 n'est pas du type (A) car {a} N{b,c} =0 et O ¢ F3. La condition (Ag) n’est ainsi pas vérifiée.

iv. F4 n’est pas du type (A) car {a} € Fy et {a} C {a,b,c}, pourtant {a,b,c} ¢ F,;. La condition (As)
n’est ainsi pas vérifiée.

v. Fy est du type (A). Les conditions (A1) et (A4) sont clairement vérifiées. L'intersection de deux éléments
de F5 est encore un élément de Fj5, ce qui fait que la condition (Ag) est satisfaite. Enfin, si 'on prend
un élément de F5, on vérifie sans difficulté que les parties de F contenant cet élément sont encore dans
Fs, ce qui constitue la condition (As).

(¢) Soit F un sous-ensemble de P(FE) du type (A), déja @ ¢ F. Il y a différents cas a distinguer :
» Si {a} € F, alors la condition (A3) impose que {a,b}, {a,c} et {a,b, c} soient également des éléments
de F. Par contre {b}, {c} et {b, c} ne peuvent étre des éléments de F puisque leurs intersections respectives
avec {a} est réduite a ’ensemble vide ce qui contredirait la condition (Ag). On obtient dans ce cas :

F = {{a},{a,b},{a,c},{a,b,c}}

» Si {b} € F, le raisonnement est identique au précédent et on obtient :

F = {{b}7 {a7 b}7 {ba C}v {a7 b, C}}

» De méme, si {c} € F,ona:

F ={{c},{a,c}, {b,c},{a,b,c}}

On suppose dans les cas a venir que {a}, {b} et {c} ne sont pas des éléments de F pour ne pas retomber
dans 'un des cas précédents.

» Si {a,b} € F, alors la condition (A3) impose que {a, b, c} soit également un élément de F. Par contre,
{a, c} et {b,c} ne peuvent étre des éléments de F puisque leurs intersections respectives avec {a, b}
seraient {a} ou {b} ce que 'on a exclu. Finalement :

F ={{a,b},{a,b,c}}

» De méme, si {a,c} € F,ona:

F ={{a,c},{a,b,c}}

» De méme, si {b,c} € F,ona:

F={{b,c}.{a,b,c}}
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» Enfin si les ensembles {a}, {b}, {c}, {a,b}, {a,c} et {b,c} ne sont pas des éléments de F, comme F est
non vide d’aprés la condition (A1), c’est que :

F ={{a,b,c}}

Pour résumer, les sous-ensembles de P(E) du type (A) sont au nombre de 7,il y a :

{{a},{a,b},{a,c},{a,b,c}}
{{b},{a, b}, {b,c}, {a,b,c}}
{{e} {a, ¢}, {b, ¢}, {a, b, c}}
{{a,b},{a,b,c}}
{{a, ¢}, {a,b,c}}
{{b, ¢}, {a, b, c}}
{{a,b,c}t}

2. (a) On a ) € P(E), ceci contredit la condition (A4), ainsi :

P(E) n’est pas du type (A)

(b) Si F est un sous-ensemble de P(E) vérifiant (A3) mais pas (A4), alors ) € F. Pour tout Y € P(E), on a
) C Y, donc d’apres (A3), on a Y € F. On obtient dans ce cas :

F =P(E)

(¢) Supposons que E posséde deux éléments distincts x et y. On a {z} et {y} qui appartiennent a P(E) \ {0},
ainsi d’aprés (Ag), on a {z}N{y} =0 € (P(E)\{0}) ce qui est absurde. Dans ce cas P(F)\ {0} n’est pas un
sous-ensemble de P(E) du type (A). Si E posséde un unique élément z, il est clair que P(E)\ {0} = {{z}}
est du type (A).

Finalement :

P(E)\ {0} est du type (A) si et seulement si E est un singleton
(d) D’aprés (A1), on a F qui est non vide, il existe ainsi A € F. On a A C E donc d’aprés (Ag), il vient E € F.
Quelque soit F du type (A), on a :
EeF
3. (a) D’apres la définition Fy,y a pour éléments les sous-ensembles de E contenant {a}, c’est-a-dire que :

Fay = {{a}, {a,b},{a,c}, {a,b,c}} I

Avec le méme type de raisonnement, on obtient :

f{a,b} = {{a, b}7 {a7 b, C}}

et

F{mb,c} = {{a? b, C}} I

On retrouve dans chaque cas des sous-ensembles de P(E) du type (A) trouvés a la question 1.(c).
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Vérifions les 4 propriétés requises :

» On a F4 # () puisque A € F4 étant donné que A C A. Ce qui montre que (A;) est vérifiée.

» Prenons deux éléments de F4, que nous notons X et Y. On a par définition de Fq : AC X et ACY,
d’ot A C X NY. Ceci démontre que X NY € Fyu, la propriété (Az) est ainsi satisfaite.

» Prenons X € Fy, c’est-a-dire A C X. Pour tout Y € P(F) tel que X C Y,onaalors: AC X CY. Ce
qui montre que Y € Fy, la propriété (Ag) est vraie.

» Enfin, il est clair que () ¢ F4 puisque A n’est pas inclus dans I'ensemble vide, A étant supposé non vide.
Finalement, on a :

F4 est du type (A)

Remarquons déja que l'application I' est correctement définie puisque, d’aprés la question précédente, F»
est du type (A) donc est un élément de F(E).

Pour montrer l'injectivité, prenons A et B deux parties non vides de E et supposons que I'(A) = I'(B),
c’est-a-dire que F4 = Fp et tachons de montrer que A = B. On a A € Fy4, donc A € Fp, c’est-a-dire que
B C A. De méme, on a B € Fg, donc B € Fy4, c’est-a-dire que A C B. Finalement, d’aprés le principe de
double inclusion, on vient de démontrer que A = B, d’ou :

I' est injective I

Convenons de noter A = CgA ol A est une partie de E. Vérifions les 4 propriétés requises :

» Remarquons que F est le complémentaire de ’ensemble vide qui est bien une partie finie de E. Ceci
montre que E € Z(F), ainsi Z(FE) est non vide et (A1) est vérifiée.

» Prenons deux éléments de Z(E), que nous notons X et Y, par définition X et Y sont des ensembles
finis. Ona X NY = X UY, or X UY est fini comme union d’ensembles finis. On vient de montrer que le
complémentaire dans F de X NY est fini, d'ot X NY € Z(FE) et par suite (Az) est satisfaite.

» Soit X € Z(E) et Y € P(E) avec X C Y, tachons de montrer que Y € Z(E) c’est-a-dire que son
complémentaire dans E est fini. Ona X C Y < Y C X, ainsi Y est inclus dans un ensemble fini donc est
lui-méme fini. Ceci montre que (A3) est vérifiée.

» Enfin, on a bien () ¢ Z(FE) puisque son complémentaire, E, est un ensemble infini par hypothése.

Z(E) est du type (A)

La question précédente montre que Z(E) € F(FE), montrons justement que Z(F) n’a pas d’antécédent par
I' ce qui mettra en défaut la surjectivité de I'. Par I’absurde, supposons qu’il existe A une partie non vide
de E telle que Z(E) = F4. Comme A € F4, on doit avoir A fini. D’autre part, A étant non vide, il existe
a € A, la partie A\ {a} a pour complémentaire dans E I'ensemble A U {a} qui est encore un ensemble
fini. Ceci montre que A \ {a} € F4 mais pourtant I'inclusion A C (A \ {a}) est clairement fausse, d’ou

I’absurdité.
Si E est infini , " n’est pas surjective I

On va prendre un élément de F qui a un nombre d’éléments minimal, cet élément va exister puisque tous les
éléments de F n’ont pas une infinité d’éléments d’aprés I’hypothése. Pour formaliser cela mathématiquement
notons B une partie de F ayant un nombre fini d’éléments et considérons I’ensemble :

R = {Card(C), C € F et C fini}

L’ensemble R est composé d’entiers naturels, il est non vide puisque Card(B) € R. Une partie non vide de
N admet un minimum. Il existe ainsi un élément de F de cardinal minimal que 1’on note A.
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Afin d’avoir F = Fgu, il s’agit de montrer que VX € F, on a A C X. On a d’aprés la propriété (As),
D =AnNX € F, ceci implique que Card(D) < Card(A). Le nombre d’éléments de A étant minimal ceci
impose Card(D) = Card(A). Or par construction D C A, ajouté au fait que D et A ont le méme nombre
d’éléments ceci montre que A C X qui était le résultat recherché.

Finalement :
F=Fa

Si E est un ensemble fini non vide, montrons que I' est surjective, pour cela prenons F € F(FE) et tachons
de lui trouver un antécédent par I'. L’ensemble E étant fini, F posséde bien un élément ayant un cardinal
fini non nul puisque F # (). Ainsi la question précédente s’applique et F = F4 = I'(A) avec A une partie
non vide de E appartenant & F, de cardinal minimal.

En combinant cela avec l'injectivité de I' démontrée a la question 3.(c), on a :

Si E est fini non vide alors I' est bijective.

Lorsque deux ensembles finis sont en bijection alors ils ont le méme nombre d’éléments. Le nombre de
sous-ensembles de P(FE) de type (A), c’est-a-dire le cardinal de F(F), est égal au cardinal de P(FE) \ {0}.
Or si E est un ensemble fini de cardinal n € N, alors le cardinal de P(FE) est égal & 2", ainsi le cardinal de
P(E)\ {0} est 2" — 1, ce qui est d’ailleurs vérifié dans le cas particulier de la question 1.

On a démontré que si F est un ensemble fini non vide de cardinal n alors :

Card(F(E)) =2"—1



