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L’usage de la calculatrice est interdit. Les raisonnements présentés devront être soigneusement justifiés et détaillés,
quelques points seront dédiés à la présentation, l’orthographe et la propreté de votre copie. En particulier, il vous est
demandé de souligner les résultats obtenus. Il n’est pas nécessaire de répondre à l’ensemble des questions pour avoir
une bonne note.

Échauffement
1. (a) Soit z = x+ iy avec (x, y) ∈ R2. Par définition de l’exponentielle complexe, on a :

ez = exeiy

(b) Soit Z ∈ C∗, trouvons-lui un antécédent par f . Le nombre complexe Z étant non nul, il est possible de
l’écrire Z = reiθ avec r ∈ R∗+ et θ ∈ R. On cherche alors z = x+ iy avec (x, y) ∈ R2 tel que :

f(z) = ez = exeiy = reiθ

On voit qu’il est possible de choisir x = ln(r) et y = θ. On peut faire la vérification :

f(ln(r) + iθ) = eln(r)+iθ = eln(r)eiθ = reiθ = Z

f est surjective

(c) L’application f n’est pas injective, en effet : f(0) = f(2iπ) = 1.

f n’est pas injective

2. C’est une équivalence à démontrer, nous allons procéder par double implication :
(=⇒) On suppose que (A ∩ C) ⊂ (B ∩ C) et (A \ C) ⊂ (B \ C), démontrons que A ⊂ B :

Soit x ∈ A, il y a deux cas :
• soit x ∈ C, alors x ∈ A ∩ C. Or, par hypothèse A ∩ C = B ∩ C donc x ∈ B ∩ C. D’où x ∈ B.
• soit x /∈ C alors x ∈ {EC. Ce qui nous donne que x ∈ A ∩ {EC = A \ C. Or, par hypothèse

A \ C ⊂ B \ C. Ce qui donne x ∈ B \ {EC, en particulier x ∈ B.
Dans les deux cas x ∈ B, ce qui démontre que A ⊂ B.

(⇐=) Réciproquement, supposons que A ⊂ B et démontrons que (A ∩ C) ⊂ (B ∩ C) et (A \ C) ⊂ (B \ C).
• Il est clair que (A ∩ C) ⊂ (B ∩ C) puisque A ⊂ B.
• De même, on a bien (A ∩ {EC) ⊂ (B ∩ {EC) puisque A ⊂ B. C’est-à-dire (A \ C) ⊂ (B \ C).{

(A ∩ C) ⊂ (B ∩ C)
(A \ C) ⊂ (B \ C)

⇐⇒ A ⊂ B

3. On suppose que A ∩B = C ∩D, démontrons que : (A ∪ (B ∩ C)) ∩ (A ∪ (B ∩D)) = A. On ne va pas procéder
par double inclusion mais directement par égalité :

(A ∪ (B ∩ C)) ∩ (A ∪ (B ∩D)) = A ∪ ((B ∩ C) ∩ (B ∩D)) en utilisant la distributivité
= A ∪ (B ∩ C ∩D) car B ∩ C ∩B ∩D = B ∩ C ∩D
= A ∪ (B ∩A ∩B) car C ∩D = A ∩B
= A ∪ (B ∩A)
= A car (B ∩A) ⊂ A

Dans tout ce calcul, on a utilisé l’associativité de l’intersection.

A ∩B = C ∩D =⇒ (A ∪ (B ∩ C)) ∩ (A ∪ (B ∩D)) = A
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4. (a) C’est faux, l’application f : R → R
x 7→ x2

n’est ni surjective ni injective.

(b) C’est vrai, d’après le cours tout nombre complexe possède une racine carrée. Plus précisément un nombre
complexe non nul possède exactement deux racines carrées et 0 possède une racine carrée, lui-même.

(c) C’est vrai. Soit E et F deux ensembles et A ⊂ E, on considère une application injective f de E dans F .
C’est-à-dire que tout élément de F admet au plus un antécédent dans E et donc au plus un antécédent
dans A puisque A ⊂ E. Ainsi f|A est injective.

(d) C’est faux, il est possible que g ◦ f soit bijective. Par exemple :

f : N → N
n 7→ 2n

g : N → N

n 7→


n

2
si n est pair

n− 1

2
si n est impair

Il est clair que f n’est pas surjective et que g n’est pas injective car g(0) = g(1).
Pour tout n ∈ N, g ◦ f(n) = g(2n) = n, ainsi g ◦ f = IdN est bien une bijection.

5. On suppose que f ◦ g ◦ f est bijective. Nous allons démontrer dans un premier temps que f est bijective.

• Montrons que f est injective. Soient (x, x′) ∈ E2 tels que f(x) = f(x′), on compose par f ◦ g pour obtenir
f(g(f(x))) = f(g(f(x′))). Or f ◦ g ◦ f est bijective donc en particulier injective, on en déduit que x = x′. D’où
l’injectivité de f .

• Montrons que f est surjective. Soit y ∈ E, cherchons-lui un antécédent. L’application f ◦ g ◦ f est bijective
donc en particulier surjective, ainsi il existe x ∈ E tel que f(g(f(x))) = y. On voit que g(f(x)) est bien un
antécédent de y par f . D’où la surjectivité de f .

Finalement, f est bijective et en particulier f−1 existe. Il reste à écrire que :

g = f−1 ◦ (f ◦ g ◦ f) ◦ f−1

Les trois applications mises en jeu dans le membre de droite sont bijectives ainsi g est bijective comme composée
de bijections.

f ◦ g ◦ f bijective implique g bijective
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Exercice 1
1. L’équation caractéristique s’écrit X2 + b = 0, il y a trois cas :

I Si b > 0, l’équation caractéristique possède deux solutions complexes conjuguées : X1 = i
√
b et X2 = −i

√
b,

dans ce cas l’ensemble des solutions est :{
y : R → R

x 7→ A cos(
√
bx) +B sin(

√
bx)

, (A,B) ∈ R2

}

I Si b = 0, l’équation devient y′′ = 0 ainsi l’ensemble des solutions est :{
y : R → R

x 7→ Ax+B
, (A,B) ∈ R2

}

I Si b < 0, l’équation caractéristique possède deux racines réelles : X1 =
√
−b et X2 = −

√
−b dans ce cas

l’ensemble des solutions est :{
y : R → R

x 7→ Ae
√
−bx +Be−

√
−bx , (A,B) ∈ R2

}

2. On reprend les solutions trouvées dans les questions précédentes en cherchant les réels A et B tels que
y(0) = y(1) = 0.
I Si b > 0, une solution de l’équation y′′ + by = 0 est définie sur R par y : x 7→ A cos(

√
bx) + B sin(

√
bx) où

(A,B) ∈ R2. {
y(0) = 0
y(1) = 0

⇔
{

A = 0

A cos(
√
b) +B sin(

√
b) = 0

⇔
{

A = 0

B sin(
√
b) = 0

Dans cette question, on cherche des solutions non nulles à cette équation. Comme on a nécessairement A = 0, il
faut que B soit non nul afin d’avoir une solution non nulle à cette équation et dans ce cas sin(

√
b) = 0, on a :

sin(
√
b) = 0⇔ ∃k ∈ Z,

√
b = kπ ⇔ ∃k ∈ Z, b = k2π2

Dans ce cas, on a une solution non nulle définie sur R par y : x 7→ B sin(kπx) où k ∈ Z∗ et B ∈ R∗.
I Si b = 0 une solution de l’équation y′′ + by = 0 est définie sur R par y : x 7→ Ax+B où (A,B) ∈ R2.{

y(0) = 0
y(1) = 0

⇔
{

B = 0
A+B = 0

⇔
{
A = 0
B = 0

Dans ce cas seule la fonction nulle vérifie ces conditions.
I Si b < 0 une solution de l’équation y′′+by = 0 est définie sur R par y : x 7→ Ae

√
−bx+Be−

√
−bx où (A,B) ∈ R2.

{
y(0) = 0
y(1) = 0

⇔

{
A+B = 0

Ae
√
−b +Be−

√
−b = 0

⇔

{
B = −A

Ae
√
−b −Ae−

√
−b = 0

⇔
{

B = −A
2Ash(

√
−b) = 0

La fonction sh s’annule uniquement en 0, or dans ce cas b 6= 0 ainsi 2Ash(
√
−b) = 0 implique que A = 0 et par

suite B = 0. Toutes les solutions trouvées sont nulles.
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En résumé l’ensemble des réels b tels qu’il existe une solution non nulle à l’équation proposée est :

{k2π2, k ∈ Z∗}

Ces solutions non nulles sont alors les fonctions :

{
y : R → R

x 7→ B sin(kπx)
, (k,B) ∈ Z∗ × R∗

}

3. Remarquons tout d’abord que la fonction z est dérivable deux fois sur I puisque c’est la somme de y′′ qui est
dérivable deux fois sur I car y est dérivable quatre fois sur I et de uy qui est dérivable deux fois sur I.
De plus z′′ = (y′′)′′ + uy′′ = y(4) + uy′′. Sur l’intervalle I, on a :

z solution de z′′+vz = 0⇔ y solution de y(4)+uy′′+v(y′′+uy) = 0⇔ y solution de y(4)+(u+v)y′′+uvy = 0 (F)

Nous devons trouver une condition nécessaire et suffisante sur (u, v) ∈ R2 telle que y soit solution sur I de
y(4) + 2ay′′ + y = 0. Cette équation différentielle a les mêmes solutions que l’équation différentielle (F) si et
seulement si les coefficients sont égaux, c’est-à-dire si et seulement si :{

u+ v = 2a
uv = 1

⇔ u et v solutions de X2 − 2aX + 1 = 0

Le discriminant de cette équation est ∆ = 4(a2− 1) qui est strictement positif puisque a > 1. Les deux solutions
sont X1 = a +

√
a2 − 1 et X2 = a −

√
a2 − 1. Les valeurs de u et v recherchées pour que l’équivalence soit

vérifiée sont :
{u, v} = {a+

√
a2 − 1, a−

√
a2 − 1}

Il n’y a pas de moyen de différencier u et v.

4. (a) On utilise les formules trouvées à la question précédente :

a±
√
a2 − 1 = k2π2 où k ∈ Z∗ ⇔ a− k2π2 = ±

√
a2 − 1 où k ∈ Z∗

⇔ a2 − 2ak2π2 + k4π4 = a2 − 1 où k ∈ Z∗

⇔ 2ak2π2 = 1 + k4π4 où k ∈ Z∗

⇔ a =
1 + k4π4

2k2π2
où k ∈ Z∗

u = k2π2 ou v = k2π2 avec k ∈ Z∗ si et seulement si a =
1 + k4π4

2k2π2

(b) On suppose que pour tout k ∈ Z∗, a 6= 1 + k4π4

2k2π2
, alors d’après la question précédente, u et v ne sont pas

égaux à k2π2 avec k ∈ Z∗. On suppose que y est une solution de l’équation (E) et on note toujours z la
fonction définie sur I par z = y′′ + uy. On a z(0) = y′′(0) + uy(0) = 0 et z(1) = y′′(1) + uy(1) = 0. Ainsi la
fonction z est solution de : {

z′′ + vz = 0
z(0) = z(1) = 0
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Comme v 6= k2π2 pour tout k ∈ Z∗, d’après la question 2. cela implique que z est la fonction nulle. Or
z = y′′ + uy donc y vérifie l’équation : {

y′′ + uy = 0
y(0) = y(1) = 0

Or u 6= k2π2 pour tout k ∈ Z∗, toujours d’après la question 2., cela implique que y est la fonction nulle.

Si pour tout k ∈ Z∗, a 6= 1 + k4π4

2k2π2
alors la seule solution de (E) est la fonction nulle.

(c) D’après la question 4.(a), on sait que u = k2π2 ou v = k2π2, considérons ces deux cas :
I Si v = k2π2 alors z est solution de : {

z′′ + vz = 0
z(0) = z(1) = 0

D’après l’étude faite à la question 2., cela signifie que la fonction z est définie sur I par z : x 7→ B sin(kπx)
où B ∈ R. Il s’agit à présent de trouver les fonctions y qui vérifient :

{
y′′ + uy = z
y(0) = y(1) = 0

⇔
{
y′′ + uy = B sin(kπx)
y(0) = y(1) = 0

⇔

{
y′′ +

1

k2π2
y = B sin(kπx) (FF)

y(0) = y(1) = 0

Ceci puisque d’après la question 3., on a uv = 1 ainsi u =
1

k2π2
.

Les solutions de l’équation homogène sont les fonctions définies sur I par y : x 7→ α cos
( x
kπ

)
+ β sin

( x
kπ

)
où (α, β) ∈ R2. Il reste à trouver une solution particulière de l’équation (FF), on la cherche sous la forme
y0 : x 7→ µ sin(kπx) où µ ∈ R. La fonction y0 est dérivable deux fois sur I et y′′0 : x 7→ −µk2π2 sin(kπx).
Pour tout x ∈ I, on a :

y′′0(x) + uy0(x) = B sin(kπx) ⇔ −µk2π2 sin(kπx) +
1

k2π2
µ sin(kπx) = B sin(kπx)

⇔
(
− µk2π2 + µ

1

k2π2

)
sin(kπx) = B sin(kπx)

Or, il existe x ∈ [0, 1] tel que sin(kπx) 6= 0, ainsi :

−µk2π2 + µ
1

k2π2
= B ⇔ µ

( 1

k2π2
− k2π2

)
= B

⇔ µ =
B

1
k2π2 − k2π2

(∆)

On a bien
1

k2π2
− k2π2 =

1− k4π4

k2π2
6= 0 puisque π ne peut être égal à

1

k4
avec k ∈ Z∗.

Il reste à interpréter ce que l’on vient d’obtenir, B est un réel arbitraire, ainsi quand B décrit R la relation
(∆) démontre que µ décrit R.
On fait la somme d’une solution particulière et des solutions de l’équation homogène, les solutions sur I de
(FF) sont les fonctions : y : x 7→ α cos

( x
kπ

)
+ β sin

( x
kπ

)
+ µ sin(kπx).

Un calcul rapide montre que les conditions y(0) = y(1) = 0 imposent α = β = 0.

En résumé s’il existe k ∈ Z∗ tel que a =
1 + k4π4

2k2π2
, les solutions de l’équation (E) sont :{

y : I → R
x 7→ µ sin(kπx)

, µ ∈ R
}
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I Si v =
1

k2π2
alors z est solution de : {

z′′ + vz = 0
z(0) = z(1) = 0

D’après la question 2., z est nécessairement la fonction nulle puisque v =
1

k2π2
ne peut s’écrire sous la

forme k′2π2 où k′ ∈ Z. En effet si tel était le cas, on aurait π4 =
1

k2k′2
, ce qui est absurde car π4 n’est pas

rationnel.
Comme z est la fonction nulle, y est solution de :{

y′′ + uy = 0
y(0) = y(1) = 0

avec u = k2π2 puisque v =
1

k2π2
et uv = 1. Toujours d’après la question 2., cela implique que y est la

fonction définie sur I par y : x 7→ B sin(kπx) où B ∈ R.
On trouve le même résultat que dans le cas précédent puisque les fonctions solutions de (E) sont :{

y : I → R
x 7→ B sin(kπx)

, B ∈ R
}
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Exercice 2
Le but de cet exercice est principalement de vous exercer aux calculs sur les nombres complexes.

1. Il s’agit de vérifier, dans les trois cas, la condition de l’énoncé : ad− bc 6= 0.

• La fonction f peut se réécrire f : z 7→ −iz − 2

z + 4i
. Ses coefficients sont a = −i, b = −2, c = 1 et d = 4i, on a :

−i× 4i− (−2)× 1 = 6 6= 0.
• Dans le cas de g, les coefficients sont a = 1, b = −i, c = 1 et d = i, ainsi ad− bc = i− (−i) = 2i 6= 0.
• Pour h, on a a = i, b = i, c = −1 et d = 1 donc ad− bc = i− (−i) = 2i 6= 0.

f, g et h sont des homographies

2. Soit z ∈ U \ {1}, nous allons démontrer que h(z) = h(z), ce qui démontrera bien que h(z) ∈ R d’après la
caractérisation d’un réel à l’aide du conjugué. La principale propriété que l’on va utiliser dans le calcul à venir

est que pour tout z ∈ U \ {1}, 1

z
= z puisque zz = |z|2 = 1. Pour tout z ∈ U \ {1} :

h(z) =
(
i
1 + z

1− z

)
= i

1 + z

1− z
= −i1 + z

1− z
= −i

1 + 1
z

1− 1
z

= −iz + 1

z − 1︸ ︷︷ ︸
on a multiplié par z

z

= i
z + 1

1− z
= h(z)

∀z ∈ U \ {1}, h(z) ∈ R

3. Donnons nous pour cette question z ∈ D, il s’agit de démontrer que h(z) ∈ P , c’est-à-dire que Im(h(z)) > 0.
Pour cela, une méthode consiste à utiliser la forme algébrique de z, posons z = x+iy où (x, y) ∈ R2. Remarquons
également que z 6= 1 puisque |z| < 1, ainsi le calcul de h(z) a un sens. En multipliant le dénominateur par la
quantité conjuguée, on a :

h(z) = i
1 + x+ iy

1− x− iy
= i

(1 + x+ iy)(1− x+ iy)

(1− x)2 + y2
= i

1− x2 − y2 + 2iy

(1− x)2 + y2
=

1

(1− x)2 + y2

(
− 2y + i(1− x2 − y2)

)
Or par hypothèse z ∈ D, donc |z| < 1, ce qui implique que |z|2 = x2 + y2 < 1 ou encore 0 < 1 − x2 − y2. Ceci
permet de conclure puisque :

Im(h(z)) =
1− x2 − y2

(1− x)2 + y2
> 0

∀z ∈ D, h(z) ∈ P

4. Soit z un nombre complexe différent de 1 :

h(z) = z ⇔ i
1 + z

1− z
= z

” ⇔ i+ iz = z − z2 , cette équivalence est correcte car 1 n’est pas solution
” ⇔ z2 + (i− 1)z + i = 0

On reconnaît une équation du second degré à coefficients complexes. Le discriminant de l’équation est
∆ = (i− 1)2− 4i = −6i, on applique la méthode vue en cours pour trouver les racines. On recherche un nombre
complexe δ tel que δ2 = ∆ avec δ = x+ iy où (x, y) ∈ R2, on obtient de façon usuelle le système :

x2 − y2 = 0
2xy = −6

x2 + y2 = 6
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Les équations 1 et 3 permettent de trouver x2 = 3 et y2 = 3 et l’équation 2 permet de dire que x et y sont de
signes opposés. Ainsi, on peut choisir δ =

√
3− i

√
3 et les deux solutions de l’équation du second de degré sont

z1 =
1 +
√

3− i(1 +
√

3)

2
et z2 =

1−
√

3 + i(−1 +
√

3)

2

Les solutions de l’équation h(z) = z sont
1 +
√

3− i(1 +
√

3)

2
et

1−
√

3 + i(−1 +
√

3)

2

5. Donnons-nous Z ∈ C et tentons de résoudre l’équation h(z) = Z. Pour z 6= 1 :

h(z) = Z ⇔ i
1 + z

1− z
= Z ⇔ i+ iz = Z − zZ ⇔ z(i+ Z) = Z − i

Remarquons à ce stade que si Z = −i l’équation devient 0 = −2i ce qui est contradictoire. Dans la suite, on

suppose donc Z 6= −i et on achève la résolution de l’équation en obtenant : z =
Z − i
i+ Z

.

∀Z ∈ C \ {−i}, Z a un unique antécédent par h

Ce qui démontre que h induit une bijection de C \ {1} dans C \ {−i}. La bijection réciproque a été trouvée lors
du calcul que l’on vient d’effectuer où l’on a exprimé z en fonction de Z. On a :

h−1 : C \ {−i} → C \ {1}

Z 7→ Z − i
i+ Z

6. Soit z ∈ R, démontrons que |g(z)|2 = g(z)g(z) = 1 ainsi on aura bien g(z) ∈ U .

g(z)g(z) =
z − i
z + i

× z + i

z − i

=
z − i
z + i

× z + i

z − i
car z est réel donc z = z

= 1

∀z ∈ R, g(z) ∈ U

7. Soit z ∈ P , c’est-à-dire que Im(z) > 0, on doit démontrer que |g(z)| < 1. Pour cela, on effectue le calcul suivant :

g(z)g(z) =
z − i
z + i

× z + i

z − i

=
zz + 1 + i(z − z)
zz + 1 + i(z − z)

=
zz + 1 + i(2iIm(z))

zz + 1− i(2iIm(z))
car z − z = 2iIm(z)

=
zz + 1− 2Im(z)

zz + 1 + 2Im(z)
< 1
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Ce quotient est en effet inférieur à 1 puisque zz + 1 − 2Im(z) < zz + 1 + 2Im(z) car Im(z) > 0. Finalement,
on a démontré que g(z)g(z) = |g(z)|2 < 1 donc |g(z)| < 1.

∀z ∈ P, g(z) ∈ D

8. Soit z ∈ C\{−4i}. Remarquons que f(z) = 0 si et seulement si z = 2i. Ainsi pour z = 2i, f(z) est réel. Excluons
ce cas par la suite puisque l’on va se servir d’un argument de f(z) :

f(z) ∈ R∗ ⇔ arg(f(z)) = 0 [π]

” ⇔ arg
(
− iz − 2i

z + 4i

)
= 0 [π]

” ⇔ arg(−i) + arg
(z − 2i

z + 4i

)
= 0 [π]

” ⇔ −π
2

+ arg
(z − 2i

z + 4i

)
= 0 [π]

” ⇔ arg
(z − 2i

z + 4i

)
=
π

2
[π]

Notons A le point d’affixe 2i, B le point d’affixe −4i et M le point d’affixe z. D’après la relation vue en cours
entre argument et angle, on a :

f(z) ∈ R∗ ⇔ arg
(z − 2i

z + 4i

)
=
π

2
[π]⇔ (

−−→
AM,

−−→
BM) =

π

2
[π] avec M 6= A et M 6= B

La condition M 6= A vient du fait que l’on a exclu le cas z = 2i au début du calcul et la condition M 6= B vient
du fait que la fonction f n’est pas définie en z = −4i.
C’est équivalent à dire que M décrit le cercle de diamètre [AB] privé de A et de B. On doit pour finir l’étude
ajouter le point A à l’ensemble recherché puisque si z = 2i alors f(z) = 0 qui est bien un nombre réel.

Le lieu géométrique recherché est le cercle de centre − i et de rayon 3 privé de B

9. On procède de même qu’à la question précédente, en prenant z ∈ C \ {−4i, 2i} :

arg(f(z)) =
π

2
[2π] ⇔ arg

(
− iz − 2i

z + 4i

)
=
π

2
[2π]

” ⇔ −π
2

+ arg
(z − 2i

z + 4i

)
=
π

2
[2π]

” ⇔ arg
(z − 2i

z + 4i

)
= π [2π]

On reprend les mêmes notations qu’à la question précédente en posant M d’affixe z, A d’affixe 2i et B d’affixe
−4i. La dernière égalité obtenue équivaut à dire que

−−→
AM et

−−→
BM ont la même direction et un sens opposé. C’est

équivalent à M ∈]AB[, en se souvenant que l’on a exclu au départ les cas M = A et M = B.

Le lieu recherché est le segment ouvert ]AB[
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Exercice 3
La principale difficulté de ce problème est le niveau d’abstraction. En effet, l’étude menée concerne certains sous-

ensembles de l’ensemble des sous-ensembles de E. Ces sous-ensembles du type (Λ) sont plus communément appelés
des filtres. Les filtres sont un outil abstrait pour généraliser la notion de limite, mais l’objet du problème est plutôt
d’étudier les propriétés élémentaires de ces objets que leur utilisation poussée.

1. (a) On a immédiatement :

P(E) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

(b) i. F1 n’est pas du type (Λ) car la condition (Λ1) n’est pas vérifiée.
ii. F2 n’est pas du type (Λ) car ∅ ∈ F2 ce qui contredit la condition (Λ4).
iii. F3 n’est pas du type (Λ) car {a} ∩ {b, c} = ∅ et ∅ /∈ F3. La condition (Λ2) n’est ainsi pas vérifiée.
iv. F4 n’est pas du type (Λ) car {a} ∈ F4 et {a} ⊂ {a, b, c}, pourtant {a, b, c} /∈ F4. La condition (Λ3)

n’est ainsi pas vérifiée.
v. F5 est du type (Λ). Les conditions (Λ1) et (Λ4) sont clairement vérifiées. L’intersection de deux éléments

de F5 est encore un élément de F5, ce qui fait que la condition (Λ2) est satisfaite. Enfin, si l’on prend
un élément de F5, on vérifie sans difficulté que les parties de E contenant cet élément sont encore dans
F5, ce qui constitue la condition (Λ3).

(c) Soit F un sous-ensemble de P(E) du type (Λ), déjà ∅ /∈ F . Il y a différents cas à distinguer :
I Si {a} ∈ F , alors la condition (Λ3) impose que {a, b}, {a, c} et {a, b, c} soient également des éléments
de F . Par contre {b}, {c} et {b, c} ne peuvent être des éléments de F puisque leurs intersections respectives
avec {a} est réduite à l’ensemble vide ce qui contredirait la condition (Λ2). On obtient dans ce cas :

F = {{a}, {a, b}, {a, c}, {a, b, c}}

I Si {b} ∈ F , le raisonnement est identique au précédent et on obtient :

F = {{b}, {a, b}, {b, c}, {a, b, c}}

I De même, si {c} ∈ F , on a :

F = {{c}, {a, c}, {b, c}, {a, b, c}}

On suppose dans les cas à venir que {a}, {b} et {c} ne sont pas des éléments de F pour ne pas retomber
dans l’un des cas précédents.
I Si {a, b} ∈ F , alors la condition (Λ3) impose que {a, b, c} soit également un élément de F . Par contre,
{a, c} et {b, c} ne peuvent être des éléments de F puisque leurs intersections respectives avec {a, b}
seraient {a} ou {b} ce que l’on a exclu. Finalement :

F = {{a, b}, {a, b, c}}

I De même, si {a, c} ∈ F , on a :

F = {{a, c}, {a, b, c}}

I De même, si {b, c} ∈ F , on a :

F = {{b, c}, {a, b, c}}
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I Enfin si les ensembles {a}, {b}, {c}, {a, b}, {a, c} et {b, c} ne sont pas des éléments de F , comme F est
non vide d’après la condition (Λ1), c’est que :

F = {{a, b, c}}

Pour résumer, les sous-ensembles de P(E) du type (Λ) sont au nombre de 7, il y a :

{{a}, {a, b}, {a, c}, {a, b, c}}
{{b}, {a, b}, {b, c}, {a, b, c}}
{{c}, {a, c}, {b, c}, {a, b, c}}

{{a, b}, {a, b, c}}
{{a, c}, {a, b, c}}
{{b, c}, {a, b, c}}
{{a, b, c}}

2. (a) On a ∅ ∈ P(E), ceci contredit la condition (Λ4), ainsi :

P(E) n’est pas du type (Λ)

(b) Si F est un sous-ensemble de P(E) vérifiant (Λ3) mais pas (Λ4), alors ∅ ∈ F . Pour tout Y ∈ P(E), on a
∅ ⊂ Y , donc d’après (Λ3), on a Y ∈ F . On obtient dans ce cas :

F = P(E)

(c) Supposons que E possède deux éléments distincts x et y. On a {x} et {y} qui appartiennent à P(E) \ {∅},
ainsi d’après (Λ2), on a {x}∩{y} = ∅ ∈ (P(E)\{∅}) ce qui est absurde. Dans ce cas P(E)\{∅} n’est pas un
sous-ensemble de P(E) du type (Λ). Si E possède un unique élément x, il est clair que P(E) \ {∅} = {{x}}
est du type (Λ).
Finalement :

P(E) \ {∅} est du type (Λ) si et seulement si E est un singleton

(d) D’après (Λ1), on a F qui est non vide, il existe ainsi A ∈ F . On a A ⊂ E donc d’après (Λ3), il vient E ∈ F .
Quelque soit F du type (Λ), on a :

E ∈ F

3. (a) D’après la définition F{a} a pour éléments les sous-ensembles de E contenant {a}, c’est-à-dire que :

F{a} = {{a}, {a, b}, {a, c}, {a, b, c}}

Avec le même type de raisonnement, on obtient :

F{a,b} = {{a, b}, {a, b, c}}

et

F{a,b,c} = {{a, b, c}}

On retrouve dans chaque cas des sous-ensembles de P(E) du type (Λ) trouvés à la question 1.(c).
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(b) Vérifions les 4 propriétés requises :
I On a FA 6= ∅ puisque A ∈ FA étant donné que A ⊂ A. Ce qui montre que (Λ1) est vérifiée.
I Prenons deux éléments de FA, que nous notons X et Y . On a par définition de FA : A ⊂ X et A ⊂ Y ,
d’où A ⊂ X ∩ Y . Ceci démontre que X ∩ Y ∈ FA, la propriété (Λ2) est ainsi satisfaite.
I Prenons X ∈ FA, c’est-à-dire A ⊂ X. Pour tout Y ∈ P(E) tel que X ⊂ Y , on a alors : A ⊂ X ⊂ Y . Ce
qui montre que Y ∈ FA, la propriété (Λ3) est vraie.
I Enfin, il est clair que ∅ /∈ FA puisque A n’est pas inclus dans l’ensemble vide, A étant supposé non vide.
Finalement, on a :

FA est du type (Λ)

(c) Remarquons déjà que l’application Γ est correctement définie puisque, d’après la question précédente, FA
est du type (Λ) donc est un élément de F(E).
Pour montrer l’injectivité, prenons A et B deux parties non vides de E et supposons que Γ(A) = Γ(B),
c’est-à-dire que FA = FB et tâchons de montrer que A = B. On a A ∈ FA, donc A ∈ FB, c’est-à-dire que
B ⊂ A. De même, on a B ∈ FB, donc B ∈ FA, c’est-à-dire que A ⊂ B. Finalement, d’après le principe de
double inclusion, on vient de démontrer que A = B, d’où :

Γ est injective

4. (a) Convenons de noter A = CEA où A est une partie de E. Vérifions les 4 propriétés requises :
I Remarquons que E est le complémentaire de l’ensemble vide qui est bien une partie finie de E. Ceci
montre que E ∈ I(E), ainsi I(E) est non vide et (Λ1) est vérifiée.
I Prenons deux éléments de I(E), que nous notons X et Y , par définition X et Y sont des ensembles
finis. On a X ∩ Y = X ∪ Y , or X ∪ Y est fini comme union d’ensembles finis. On vient de montrer que le
complémentaire dans E de X ∩ Y est fini, d’où X ∩ Y ∈ I(E) et par suite (Λ2) est satisfaite.
I Soit X ∈ I(E) et Y ∈ P(E) avec X ⊂ Y , tâchons de montrer que Y ∈ I(E) c’est-à-dire que son
complémentaire dans E est fini. On a X ⊂ Y ⇔ Y ⊂ X, ainsi Y est inclus dans un ensemble fini donc est
lui-même fini. Ceci montre que (Λ3) est vérifiée.
I Enfin, on a bien ∅ /∈ I(E) puisque son complémentaire, E, est un ensemble infini par hypothèse.

I(E) est du type (Λ)

(b) La question précédente montre que I(E) ∈ F(E), montrons justement que I(E) n’a pas d’antécédent par
Γ ce qui mettra en défaut la surjectivité de Γ. Par l’absurde, supposons qu’il existe A une partie non vide
de E telle que I(E) = FA. Comme A ∈ FA, on doit avoir A fini. D’autre part, A étant non vide, il existe
a ∈ A, la partie A \ {a} a pour complémentaire dans E l’ensemble A ∪ {a} qui est encore un ensemble
fini. Ceci montre que A \ {a} ∈ FA mais pourtant l’inclusion A ⊂ (A \ {a}) est clairement fausse, d’où
l’absurdité.

Si E est infini ,Γ n’est pas surjective

5. (a) On va prendre un élément de F qui a un nombre d’éléments minimal, cet élément va exister puisque tous les
éléments de F n’ont pas une infinité d’éléments d’après l’hypothèse. Pour formaliser cela mathématiquement
notons B une partie de F ayant un nombre fini d’éléments et considérons l’ensemble :

R = {Card(C), C ∈ F et C fini}

L’ensemble R est composé d’entiers naturels, il est non vide puisque Card(B) ∈ R. Une partie non vide de
N admet un minimum. Il existe ainsi un élément de F de cardinal minimal que l’on note A.
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(b) Afin d’avoir F = FA, il s’agit de montrer que ∀X ∈ F , on a A ⊂ X. On a d’après la propriété (Λ2),
D = A ∩ X ∈ F , ceci implique que Card(D) ≤ Card(A). Le nombre d’éléments de A étant minimal ceci
impose Card(D) = Card(A). Or par construction D ⊂ A, ajouté au fait que D et A ont le même nombre
d’éléments ceci montre que A ⊂ X qui était le résultat recherché.
Finalement :

F = FA

(c) Si E est un ensemble fini non vide, montrons que Γ est surjective, pour cela prenons F ∈ F(E) et tâchons
de lui trouver un antécédent par Γ. L’ensemble E étant fini, F possède bien un élément ayant un cardinal
fini non nul puisque F 6= ∅. Ainsi la question précédente s’applique et F = FA = Γ(A) avec A une partie
non vide de E appartenant à F , de cardinal minimal.
En combinant cela avec l’injectivité de Γ démontrée à la question 3.(c), on a :

Si E est fini non vide alors Γ est bijective

(d) Lorsque deux ensembles finis sont en bijection alors ils ont le même nombre d’éléments. Le nombre de
sous-ensembles de P(E) de type (Λ), c’est-à-dire le cardinal de F(E), est égal au cardinal de P(E) \ {∅}.
Or si E est un ensemble fini de cardinal n ∈ N, alors le cardinal de P(E) est égal à 2n, ainsi le cardinal de
P(E) \ {∅} est 2n − 1, ce qui est d’ailleurs vérifié dans le cas particulier de la question 1.
On a démontré que si E est un ensemble fini non vide de cardinal n alors :

Card(F(E)) = 2n − 1


