L'usage de la calculatrice est interdit. Les raisonnements présentés devront être soigneusement justifiés et détaillés, quelques points seront dédiés à la présentation, l'orthographe et la propreté de votre copie. En particulier, il vous est demandé de souligner les résultats obtenus. Il n'est pas nécessaire de répondre à l'ensemble des questions pour avoir une bonne note.

Exercice

Trouver toutes les fonctions de \mathbb{R}_+^* dans \mathbb{R} solutions de :

$$(E)$$
: $xy'(x) + y(x) = Arctan(x)$

Problème 1 : Deux formules pour le calcul intégral

Le but de cet exercice est de démontrer puis d'utiliser deux formules mettant en jeu des intégrales. Les parties A et B sont indépendantes.

1. Énoncé. Soit $f:[a,b] \to \mathbb{R}$ continue. La propriété du Roi s'énonce ainsi :

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(a+b-t)dt$$

- (a) Démontrer la propriété à l'aide d'un changement de variable.
- (b) Proposer une autre preuve de cette formule à l'aide de F une primitive sur [a,b] de f.
- 2. Applications de cette formule.
 - (a) Soit $f:[0,1] \to \mathbb{R}$ continue. Justifier que :

$$\int_{0}^{\frac{\pi}{2}} f(\cos(x)) dx = \int_{0}^{\frac{\pi}{2}} f(\sin(x)) dx$$

(b) Soit
$$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan(x)^{2025}} dx$$
. On pose $J = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\tan(x)^{2025}}{1 + \tan(x)^{2025}} dx$.

- i. Montrer que I = J.
- ii. Que vaut I + J?
- iii. En déduire la valeur de I.

(c) Calculer
$$I = \int_{-3}^{3} \frac{1+x^2}{1+2^x} dx$$
.

(d) Calculer
$$I = \int_0^{2\pi} \sin(\sin(x) - x) dx$$
.

B-Intégrale et bijection réciproque

1. Énoncé. Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 avec f'>0 sur [a,b]. Nous allons démontrer que :

$$\int_{a}^{b} f(t)dt + \int_{f(a)}^{f(b)} f^{-1}(t)dt = bf(b) - af(a)$$

- (a) Justifier que f^{-1} existe et donner son ensemble de définition.
- (b) Justifier que $\int_{f(a)}^{f(b)} f^{-1}(t)dt$ est bien définie.
- (c) En utilisant un changement de variable, montrer que : $\int_{f(a)}^{f(b)} f^{-1}(t) dt = \int_a^b u f'(u) du.$
- (d) En déduire la formule donnée dans l'énoncé.

Dans la suite de ce sujet, on admet que la formule reste vérifiée avec uniquement les hypothèses : f continue, bijective et strictement monotone sur [a,b]. C'est-à-dire que l'hypothèse sur la dérivabilité n'est pas nécessaire car on peut démontrer la formule d'une autre manière que l'on ne traitera pas dans ce sujet.

- 2. Un exemple simple. Soit $\alpha \in \mathbb{R}_+^*$. On pose $f: t \mapsto t^{\alpha}$ et $(a, b) \in \mathbb{R}_+^*$ avec a < b.
 - (a) Montrer que f vérifie les hypothèses de l'énoncé. Expliciter f^{-1} .
 - (b) Vérifier la validité de la formule sur cet exemple.
- 3. Une application plus compliquée. Le but de cette question est de calculer $I = \int_0^{\frac{\pi}{4}} \sqrt{\tan(t)} dt$. On pose $f: t \mapsto \sqrt{\tan(t)}$.
 - (a) i. Montrer que f vérifie les hypothèses alternatives de la formule sur $[a,b]=\left[0,\frac{\pi}{4}\right]$. Expliciter f^{-1} avec son ensemble de définition.
 - ii. En déduire que $I = \frac{\pi}{4} \int_0^1 \operatorname{Arctan}(t^2) dt$.
 - iii. Justifier que $I = 2 \int_0^1 \frac{t^2}{1 + t^4} dt$.
 - (b) Factoriser t^4+1 comme un produit de deux polynômes de degré 2 à coefficients réels.
 - (c) Trouver $(a, b, c, d) \in \mathbb{R}^4$ tels que pour tout $t \in \mathbb{R}$:

$$\frac{t^2}{1+t^4} = \frac{at+b}{t^2-\sqrt{2}t+1} + \frac{ct+d}{t^2+\sqrt{2}t+1}$$

- (d) Montrer que $\int_0^1 \frac{t}{t^2 + \sqrt{2}t + 1} dt = \int_0^{-1} \frac{t}{t^2 \sqrt{2}t + 1} dt$.
- (e) En déduire une expression de I en fonction de $\int_{-1}^{1} \frac{t}{t^2 \sqrt{2}t + 1} dt$.
- (f) Terminer le calcul en trouvant l'expression de ${\cal I}.$
- (g) Simplifier au maximum l'expression obtenue en l'écrivant sous la forme $\alpha \left(\ln(\beta) + \frac{\pi}{2} \right)$ où α et β sont des réels à préciser.

Problème 2 : Réciproque de la fonction th

Partie A : Étude Argth

- 1. Justifier que th réalise une bijection de \mathbb{R} sur]-1,1[. On appelle argument tangente hyperbolique sa bijection réciproque et on la note Argth.
- 2. Étudier la fonction Argth, on précisera en particulier sa dérivée et on tracera le graphe.
- 3. Démontrer que : $\forall x \in]-1,1[, \operatorname{Argth}(x) = \frac{1}{2} \ln \left(\frac{x+1}{1-x}\right).$

Partie B: Une équation fonctionnelle

Le but de cette partie est de déterminer les fonctions f de \mathbb{R} dans \mathbb{R} qui vérifient les deux conditions suivantes :

$$(\bigstar) \begin{cases} \forall x \in \mathbb{R}, \ f(2x) = \frac{2f(x)}{1 + f(x)^2} \\ f \text{ est dérivable en } 0 \end{cases}$$

On dira qu'une fonction f vérifie (\bigstar) si et seulement si elle vérifie les deux conditions ci-dessus.

- 1. (a) Déterminer les fonctions constantes qui vérifient (★).
 - (b) Montrer que th vérifie (★).
 - (c) Montrer que si f vérifie (\bigstar) alors pour tout $\lambda \in \mathbb{R}$ la fonction $f_{\lambda} : x \mapsto f(\lambda x)$ vérifie également (\bigstar) .
 - (d) Montrer que si f vérifie (\bigstar) alors -f vérifie (\bigstar) .

Dans toute la suite, on se donne f une fonction non constante qui vérifie (\bigstar) .

- 2. Déterminer les valeurs possibles de f(0).
- 3. Montrer que pour tout $x \in \mathbb{R}$, $-1 \le f(x) \le 1$.
- 4. Dans cette question, on suppose que f(0) = 1.
 - (a) Justifier que l'on peut fixer $x_0 \in \mathbb{R}$ tel que $f(x_0) \neq f(0)$. On définit la suite (u_n) par : $\forall n \in \mathbb{N}, \ u_n = f\left(\frac{x_0}{2^n}\right)$.
 - (b) Montrer que la suite (u_n) converge et préciser sa limite.
 - (c) Pour $n \in \mathbb{N}$, établir une relation entre u_n et u_{n+1} . En déduire que la suite (u_n) garde un signe constant et aboutir à une contradiction avec la question précédente.
 - (d) Que peut-on dire si l'hypothèse f(0) = 1 est remplacée par l'hypothèse f(0) = -1? Conclusion?

Dans la suite, on suppose que f(0) = 0.

5. Démontrer que pour tout $x \in \mathbb{R}$, $f(x) \neq -1$ et $f(x) \neq 1$.

On définit la fonction g par : $\forall x \in \mathbb{R}$, g(x) = Argth(f(x)).

- 6. (a) Pourquoi g est-elle bien définie?
 - (b) Montrer que : $\forall x \in \mathbb{R}, \ g(2x) = 2g(x).$
 - (c) Justifier que g est dérivable en 0.

On pose a = g'(0).

- 7. Soit $x \in \mathbb{R}^*$, on définit la suite (v_n) par : $\forall n \in \mathbb{N}, \ v_n = \frac{g\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}$.
 - (a) Montrer que (v_n) converge et déterminer sa limite.
 - (b) En déduire que g est linéaire.
 - (c) Que vaut alors f?
- 8. En conclusion, déterminer toutes les fonctions solutions du problème (\bigstar) .