
MPSI2 Colle 12 : Structures algébriques 2025-2026

1 ⋆ Soit (A,+,×) un anneau tel que :

∀(x, y) ∈ A2, (xy = 0 ⇒ x = 0 ou y = 0)

Montrer que :
∀(a, b) ∈ A2, (ab = 1 ⇒ ba = 1)

Corrigé : Soient (a, b) ∈ A2 tels que ab = 1. On a :

a(ba− 1) = aba− a = (ab− 1)a = 0

Ainsi a = 0 ou ba = 1.

• Si ba = 1, on a le résultat voulu.

• Si a = 0 alors ab = 0 et comme ab = 1, on a : 0 = 1, dans ce cas ba = b× 0 = 0 = 1 comme voulu.

2 Soit ∗ la loi de composition interne sur R définie par :

∀(x, y) ∈ R2, x ∗ y = x+ y + x2y2

1. Vérifier que ∗ est commutative.

2. La loi ∗ est-elle associative ?

3. Montrer que ∗ admet un neutre et déterminer cet élément neutre.

4. Résoudre l’équation d’inconnue x ∈ R : 1 ∗ x = 0.

5. Résoudre l’équation d’inconnue x ∈ R : 1 ∗ x = 1.

Corrigé :

1. Soient (x, y) ∈ R2, on a :
y ∗ x = y + x+ y2x2 = x+ y + x2y2 = x ∗ y

∗ est commutative

2. On a :
(1 ∗ 1) ∗ (−1) = (1 + 1 + 1212) ∗ (−1) = 3 ∗ (−1) = 3 + (−1) + 32(−1)2 = 11

1 ∗ (1 ∗ (−1)) = 1 ∗ (1 + (−1) + 12(−1)2) = 1 ∗ 1 = 1 + 1 + 1212 = 3

Ce contre exemple démontre que :

∗ n’est pas associative

3. Soit x ∈ R, on a tout de suite :
x ∗ 0 = 0 ∗ x = x

0 est le neutre de ∗

4. Soit x ∈ R, on a :
1 ∗ x = 0 ⇔ 1 + x+ x2 = 0

Cette équation du second degré n’a pas de solution dans R car son discriminant est strictement négatif.

S = ∅

5. Soit x ∈ R, on a :
1 ∗ x = 1 ⇔ x+ x2 = 0

Cette équation a pour solutions −1 et 0.

S = {−1, 0}
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3 ⋆ Soit G un groupe, e son élément neutre et (a, b) ∈ G2 tels que : ba = ab2 et ab = ba2. Démontrer que a = b = e.

Corrigé : On a :
ba = ab2 = (ab)b = (ba2)b = (ba)(ab)

On peut simplifier par ba puisque dans un groupe tout élément est inversible donc régulier pour obtenir : e = ab. Ainsi
b = a−1 et on a aussi ba = e. On en déduit que :

e = ab = ba2 = (ba)a = ea = a

Ce qui donne a = e et b = a−1 = e−1 = e.

a = b = e

4 ⋆ Soit (A,+,×) un anneau. On suppose que pour tout x ∈ A, on a : x2 = x.

1. Démontrer que : ∀x ∈ A, 2x = 0.

2. En déduire que A est commutatif.

Corrigé :

1. Soit x ∈ A, on peut appliquer l’hypothèse à 1 + x pour obtenir :

1 + x = (1 + x)2 = (1 + x)(1 + x) = 12 + 2x+ x2 = 1 + 2x+ x

Ce qui donne bien 2x = 0.

∀x ∈ A, 2x = 0

2. Soient (x, y) ∈ A2, on a :
x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y

Ainsi xy + yx = 0. Or d’après la question 1, nous avons xy + xy = 0. En soustrayant ces deux dernières égalités, nous
obtenons bien xy = yx.

A est commutatif

5 ⋆⋆ Soit (E,×) un magma associatif. On suppose qu’il existe a ∈ E tel que :

∀y ∈ E, ∃x ∈ E, y = axa

1. Démontrer que E admet un neutre.

2. Démontrer que a est inversible et donner a−1.

Corrigé :

1. On peut appliquer l’hypothèse à a (à la place de y), on sait qu’il existe b ∈ E tel que a = aba. Soit y ∈ E, on lui associe
x ∈ E tel que y = axa. En utilisant l’associativité, on a :

(ab)y = (ab)(axa) = (aba)(xa) = axa = y

y(ba) = (axa)(ba) = ax(aba) = axa = y

Ainsi ab est un neutre à gauche et ba est un neutre à droite. On a alors (ab)(ba) = ab car ba est neutre à droite et
(ab)(ba) = ba car ab est neutre à gauche d’où ab = ba. On pose e = ab, qui est bien le neutre de ×.

ab est le neutre de ×
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2. On a :
a(bab) = (ab)(ab) = ee = e

(bab)a = baba = ee = e

Ainsi a est inversible et a−1 = bab.

a−1 = bab

6 ⋆⋆⋆ Soit A un anneau non nul et M = {x ∈ A, x2 = x}. Démontrer que si M est fini alors son cardinal est pair.

Corrigé : Soit x ∈ M , c’est-à-dire x2 = x. On a :

(1− x)2 = 1− 2x+ x2 = 1− 2x+ x = 1− x

ainsi 1 − x ∈ M . Ce qui démontre que dans l’ensemble M chaque élément x peut être appareillé avec 1 − x, cela va nous
permettre de conclure que le cardinal de M est pair lorsque M est fini. Il reste juste à démontrer que x et 1 − x sont
distincts afin de pouvoir compter effectivement les éléments de M par paires. Soit x ∈ M , par l’absurde si x = 1 − x alors
x = x2 = x− x2 = 0, cependant si x = 0 alors x n’est pas égal à 1− x puisque 0 ̸= 1 dans un anneau non nul.

Si M est fini alors M est de cardinal pair

7 ⋆⋆ Soit A un anneau et (x, y) ∈ A2, on suppose que 1− xy est inversible. Démontrer que 1− yx est inversible.

Corrigé : Par hypothèse, il existe v ∈ A tel que :{
v(1− xy) = 1
(1− xy)v = 1

⇔
{

vxy = v − 1
xyv = v − 1

On a :
(1 + yvx)(1− yx) = 1 + yvx− yx− yvxyx = 1 + yvx− yx− y(v − 1)x = 1

On vérifie de même que (1− yx)(1 + yvx) = 1. On a bien démontré que 1− yx est inversible et (1− yx)−1 = 1 + yvx.

8 ⋆

1. Démontrer que A = {a+ b
√
2, (a, b) ∈ Q2} est un corps.

2. Démontrer que B = {a+ b
√
2 + c

√
3, (a, b) ∈ Q2} n’est pas un corps.

Corrigé :

1. Montrons pour cela que A est un sous-corps de R pour les opérations usuelles. Dans cette question, on note x = a+b
√
2

et y = c+ d
√
2 avec (a, b, c, d) ∈ Q4.

• Déjà A ⊂ R

• -0 = 0 + 0
√
2 ainsi 0 ∈ A.

-On a x+ y = (a+ c)︸ ︷︷ ︸
∈Q

+ (b+ d)︸ ︷︷ ︸
∈Q

√
2 ∈ A.

-On a : −x = −a︸︷︷︸
∈Q

+ (−b)︸︷︷︸
∈Q

√
2 ∈ A

On en déduit que (A,+) est un sous-groupe de (R,+).

• -1 = 1 + 0
√
2 appartient à A.
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• -On a :
xy = (a+ b

√
2)× (c+ d

√
2) = ac+ 2bd︸ ︷︷ ︸

∈Q

+ (ad+ bc)︸ ︷︷ ︸
∈Q

√
2 ∈ A

On en déduit que (A,+,×) est un sous-anneau de (R,+,×).

• Soit x ∈ A \ {0}, nous devons démontrer que
1

x
∈ A. On a :

1

a+ b
√
2
=

a− b
√
2

a2 − 2b2
=

a

a2 − 2b2︸ ︷︷ ︸
∈Q

− b

a2 − 2b2︸ ︷︷ ︸
∈Q

√
2 ∈ A

Au cours de ce calcul, on a multiplié par a− b
√
2 qui est non nul car sinon :

• soit b = 0 et dans ce cas a = 0 ce qui est absurde puisque x ̸= 0.

• soit b ̸= 0 et dans ce cas :
√
2 =

a

b
ce qui est absurde car

√
2 est irrationnel.

A est un corps

2. L’ensemble B n’est pas stable par multiplication, en effet
√
2 ×

√
3 =

√
6 /∈ B. En effet, raisonnons par l’absurde en

supposant que
√
6 = p+ q

√
2 + r

√
3 avec (p, q, r) ∈ Q3. On a :

√
6− p = q

√
2 + r

√
3

On élève au carré :
6 + p2 − 2

√
6p = 2q2 + 3r2 + 2qr

√
6

Ce qui donne :
6 + p2 − 2q2 − 3r2 = (2qr + 2p)

√
6

Si jamais 2qr+2p ̸= 0 alors
√
6 =

6 + p2 − 2q2 − 3r2

2qr + 2p
ce qui est absurde car

√
6 est irrationnel. On a donc 2qr+2p = 0

et par suite 6+p2−2q2−3r2 = 0, c’est-à-dire (2− r2)(q2−3) = 0. Cette dernière relation est absurde car elle implique

que r = ±
√
2 ou q = ±

√
3 ce qui n’est pas le cas car q et r sont rationnels.

B n’est pas un corps
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Problème

Dans tout l’exercice (A,+,×) désigne un anneau commutatif non nul. On note 0 et 1 les éléments neutres respectifs de
l’addition et de la multiplication. Pour tous (x, y) ∈ A2, on s’autorise à noter xy au lieu de x × y. On dit qu’une partie, I,
de A est un idéal de A si et seulement si les trois conditions suivantes sont vérifiées :

i) 0 ∈ I
ii) ∀(x, y) ∈ I2, x+ y ∈ I
iii) ∀λ ∈ A, ∀x ∈ I, λx ∈ I

1. Un exemple. On se place dans l’anneau F(R,R) des fonctions de R dans R muni de l’addition et de la multiplication
usuelles sur les fonctions. Pour tout a ∈ R, on pose :

Ia = {f ∈ F(R,R), f(a) = 0}

Démontrer que Ia est un idéal de F(R,R).
2. Idéaux de Z. Dans cette question, on considère l’anneau Z muni de l’addition et la multiplication usuelles.

(a) Soit n ∈ Z, démontrer que nZ = {nk, k ∈ Z} est un idéal de Z.
(b) Soit I un idéal de Z. On suppose que I ̸= {0}.

i. Justifier que n = min(I ∩ N∗) existe.

ii. Soit a ∈ I, démontrer que le reste de la division euclidienne de a par n est nul. En déduire que I ⊂ nZ.
iii. Réciproquement démontrer que nZ ⊂ I.

(c) Caractériser les idéaux de Z.

3. Idéaux et éléments inversibles. Démontrer que si I est un idéal de A alors :

I contient un élément inversible ⇔ I = A

4. Idéaux et morphismes. Soit f : A → Â un morphisme d’anneaux, avec Â un anneau également commutatif et non
nul.

(a) Soit J un idéal de Â, démontrer que f−1(J) est un idéal de A.

(b) Trouver un exemple montrant que si I est un idéal de A, f(I) n’est pas toujours un idéal de Â.

5. Radical d’un idéal. Soit I un idéal de A. On appelle radical de I et on note
√
I l’ensemble :

√
I = {x ∈ A, ∃n ∈ N∗, xn ∈ I}

(a) Démontrer que I ⊂
√
I.

(b) Démontrer que
√
I est un idéal de A. On pensera à utiliser la formule du binôme de Newton.

(c) Vérifier que

√√
I =

√
I.

(d) Dans cette question A = Z. Déterminer l’ensemble des entiers naturels m ∈ Z tels que
√
mZ = mZ.

6. Idéaux premiers. On dit qu’un idéal I est premier si et seulement si :

∀(x, y) ∈ A2, xy ∈ I ⇒ x ∈ I ou y ∈ I

(a) Donner un idéal premier de Z.
(b) On suppose que tous les idéaux de A sont premiers. Démontrer que A est intègre puis que A est un corps.
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Corrigé du problème

1. Soit a ∈ R, Ia est inclus dans F(R,R) par définition. Il reste à vérifier les trois conditions requises pour que Ia soit un
idéal :

▶ i) Notons θ la fonction nulle de R dans R, on a θ(a) = 0 ainsi θ ∈ Ia.

▶ ii) Soient (f, g) ∈ I2a , c’est-à-dire que f(a) = g(a) = 0. On a (f + g)(a) = 0 ainsi f + g ∈ Ia.

▶ iii) Soit λ ∈ F(R,R) et f ∈ Ia, c’est-à-dire que f(a) = 0. On a (λf)(a) = λ(a)f(a) = 0 ainsi λf ∈ Ia.

Ia est un idéal de F(R,R)

2. (a) Soit n ∈ Z, par définition nZ ⊂ Z. Vérifions les trois propriétés requises pour avoir un idéal :

▶ i) On a : 0 ∈ nZ puisque 0 = n× 0.

▶ ii) Soient (x, y) ∈ (nZ)2, il existe (k, k′) ∈ Z2 tels que x = nk et y = nk′. Ainsi x+ y = n(k + k′) ∈ nZ puisque
k + k′ ∈ Z.
▶ iii) Soient λ ∈ Z et x ∈ nZ, il existe k ∈ Z tel que x = nk. On a : λx = n(λk) ∈ nZ puisque λk ∈ Z.

nZ est un idéal de Z

(b) i. Comme l’idéal I ̸= {0}, il existe un entier non nul appartenant à I, notons-le m.

• Si m > 0, il appartient à I ∩ N∗.

• Si m < 0, on a −1×m = −m ∈ I d’après la condition iii) et −m > 0.

Ce raisonnement démontre que I ∩ N∗ est non vide et bien sûr I ∩ N∗ ⊂ N. Or toute partie non vide de N
possède un minimum.

n = min(I ∩ N∗) existe

ii. Soit a ∈ I, effectuons la division euclidienne de a par n qui est bien non nul par définition. Il existe (q, r) ∈ Z2

tels que :
a = qn+ r avec 0 ≤ r < n

On a n ∈ I donc (−q)× n ∈ I d’après la propriété iii). De plus comme a ∈ I, on a r = a+ (−qn) ∈ I d’après
la propriété ii).

Si r ̸= 0, on a r ∈ I ∩N∗ et r < n, ceci est absurde comme n est le minimum de I ∩N∗. On a nécessairement
r = 0 et par suite a = qn ∈ nZ. Ce qui démontre que :

I ⊂ nZ

iii. Réciproquement, soit x ∈ nZ, il existe k ∈ N tel que x = nk. Comme n ∈ I, la propriété iii) implique que
x = nk ∈ I. Par double inclusion, on a démontré que :

I = nZ

(c) C’est un bilan des questions 2.(a) et 2.(b), les idéaux de Z sont exactement les parties de Z de la forme nZ où
n ∈ N. La question 2.(a) démontre en effet que nZ est un idéal de Z et la question 2.(b) démontre la réciproque, à
savoir qu’un idéal de Z s’écrit sous la forme nZ où n ∈ N∗. Enfin il faut tenir compte de l’idéal {0} qui est obtenu
pour n = 0.

I idéal de Z ⇔ ∃n ∈ N, I = nZ

3. On procède par double implication.

(⇒) On suppose que I est un idéal de A qui contient un élément inversible que l’on note x. D’après la propriété iii),
on a 1 = x−1x ∈ I puisque x−1 ∈ A. Soit λ ∈ A, on a λ = λ× 1 ∈ I toujours d’après la propriété iii) puisque 1 ∈ I. Ce
qui démontre que A ⊂ I et par définition I ⊂ A d’où I = A.

(⇐) Réciproquement si I = A (qui est bien un idéal de A), on a 1 ∈ I qui est inversible.

I contient un élément inversible ⇔ I = A

4. (a) On rappelle la caractérisation de l’image réciproque qui va nous servir dans toute cette question, pour tout x ∈ A :

x ∈ f−1(J) ⇔ f(x) ∈ J
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On a f−1(J) ⊂ A. Vérifions les trois conditions requises pour que f−1(J) soit un idéal de A :

▶ i) 0A ∈ f−1(J) car f(0A) = 0Â ∈ J car f est un morphisme et J est un idéal de Â.

▶ ii) Soient (x, y) ∈ f−1(J), on a f(x + y) = f(x) + f(y) ∈ J puisque f(x) et f(y) sont deux éléments de J qui

est un idéal de Â. Ce qui démontre que x+ y ∈ f−1(J).

▶ iii) Enfin, soit λ ∈ A et x ∈ f−1(J), on a f(λx) = f(λ)f(x). Or f(λ) ∈ Â et f(x) ∈ J , d’après la propriété iii)
cela implique que f(λx) ∈ J et par suite λx ∈ f−1(J).

f−1(J) est un idéal de Â

(b) Considérons le morphisme suivant, avec Z et R munis de l’addition et la multiplication usuelles :

f : Z → R
x 7→ x

Le morphisme f va fournir un contre exemple, prenons I = Z qui est bien un idéal de Z, par contre f(Z) = Z
n’est pas un idéal de R puisque la propriété iii) n’est pas vérifiée. En effet

1

2
∈ R et 1 ∈ Z pourtant

1

2
×1 =

1

2
/∈ Z.

L’image directe d’un idéal par un morphisme d’anneaux n’est pas toujours un idéal

5. (a) Soit x ∈ I, on a x = x1 ∈ I ainsi x ∈
√
I avec n = 1.

I ⊂
√
I

(b) Par définition, on a :
√
I ⊂ A. Il reste à vérifier les trois propriétés :

▶ i) 0 ∈
√
I car 0 = 01 ∈ I.

▶ ii) Soient (x, y) ∈ (
√
I)2, c’est-à-dire qu’il existe (m,n) ∈ (N∗)2 tels que xm ∈ I et yn ∈ I. Comme l’anneau A

est commutatif, x et y commutent et on peut appliquer la formule du binôme de Newton :

(x+ y)m+n =

m+n∑
k=0

(
m+ n

k

)
xkym+n−k =

m∑
k=0

(
m+ n

k

)
xkym+n−k

︸ ︷︷ ︸
(1)

+

m+n∑
k=m+1

(
m+ n

k

)
xkym+n−k

︸ ︷︷ ︸
(2)

• Etude de (1). On a 0 ≤ k ≤ m ⇔ n ≤ m + n − k ≤ m + n. Ceci montre que l’on peut mettre yn en
facteur dans la somme (1) :

(1) =

m∑
k=0

(
m+ n

k

)
xkym+n−k = yn

m∑
k=0

(
m+ n

k

)
xkym−k

︸ ︷︷ ︸
λ

L’expression (1) appartient à I d’après la propriété iii) puisque c’est le produit d’un élément λ de A par yn qui
appartient à I.

• Etude de (2). Là aussi, on peut réécrire la somme (2) en mettant xm en facteur :

m+n∑
k=m+1

(
m+ n

k

)
xkym+n−k = xm

m+n∑
k=m+1

(
m+ n

k

)
xk−mym+n−k

On conclut que même que précédemment que (2) appartient à I puisque c’est le produit d’un élément de I par
un élément de A.

Ainsi (x + y)m+n = (1) + (2) est un élément de I comme somme de deux éléments de I d’après la propriété ii).

Ce qui démontre que x+ y ∈
√
I.

▶ iii) Enfin, soit λ ∈ A et x ∈
√
I, il existe n ∈ N∗ tel que xn ∈ I. En utilisant le fait que A est commutatif, on a :

(λx)n = λnxn ∈ I d’après la propriété iii) car xn ∈ I

√
I est un idéal de I
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(c) D’après la question (a), si I est un idéal de A alors I ⊂
√
I. En appliquant cette propriété à

√
I qui est bien un

idéal d’après la question précédente, on a
√
I ⊂

√√
I. Pour l’autre inclusion, prenons x ∈

√√
I, cela signifie qu’il

existe n ∈ N∗ tel que xn ∈
√
I. Ceci implique l’existence de p ∈ N∗ tel que (xn)p ∈ I, c’est-à-dire xnp ∈ I. Comme

np ∈ N∗, ceci démontre que x ∈
√
I. Par double inclusion, on conclut que :√√

I =
√
I

(d) Si m = 0 ou m = 1, on a bien
√
mZ = mZ. On remarque également que d’après la question (a), on a toujours

mZ ⊂
√
mZ.

▶ Supposons que m ≥ 2 soit divisible par le carré d’un entier, c’est-à-dire qu’il existe un entier d ≥ 2 tel que
m = d2k avec k ∈ N. On a dk ∈

√
mZ puisque (dk)2 = mk ∈ mZ, pourtant dk /∈ mZ puisque m ne divise pas dk.

Ceci montre que si m est divisible par le carré d’un entier alors
√
mZ ̸⊂ mZ et par contraposition si

√
mZ ⊂ mZ

alors m n’est pas divisible par le carré d’un entier.

▶ Réciproquement supposons quem ≥ 2 ne soit pas divisible par le carré d’un entier. Démontrons que
√
mZ ⊂ mZ,

soit x ∈
√
mZ, il existe n ∈ N∗ tel que xn ∈ mZ. Ceci implique que m divise xn. Soit p un nombre premier qui

divise m alors p|xn donc p|x et par suite m|x puisque p apparâıt à la puissance 1 dans la décomposition en facteurs
premiers de m. Or m|x ⇔ x ∈ mZ, ce qui démontre l’inclusion souhaitée.

√
mZ = mZ si et seulement si m n’est pas divisible par le carré d’un entier

6. (a) L’idéal 2Z est un idéal premier de Z. En effet, si x et y sont deux entiers relatifs tels que xy ∈ 2Z, c’est-à-dire que
2 divise xy, ceci implique que 2 divise x ou 2 divise y. Ce qui démontre que x ∈ 2Z ou y ∈ 2Z.

Plus généralement, si p est un nombre premier alors pZ est un idéal premier de Z

(b) I = {0} est un idéal de A et par hypothèse, il est premier. Ainsi pour (x, y) ∈ A2, on a :

xy ∈ {0} ⇒ x ∈ {0} ou y ∈ {0}

C’est-à-dire xy = 0 ⇒ x = 0 ou y = 0. Or l’anneau A est supposé commutatif, non nul et le calcul précédent
montre que A est intègre. Soit x ∈ A \ {0}, démontrons que x est inversible ceci impliquera que A est un corps.
On considère l’ensemble x2A = {x2y, y ∈ A}, on montre sans difficulté que x2A est un idéal de A. Cet idéal est
premier d’après l’hypothèse de l’énoncé, on a x2 ∈ x2A donc x ∈ x2A, c’est-à-dire que x = x2y où y ∈ A. Or
l’anneau A est intègre comme nous l’avons démontré ci-dessus donc x = x2y et x ̸= 0 implique que 1 = xy. Ce
qui démontre que x est inversible.

A est un corps

La notion d’idéal est fondamentale en algèbre. On peut démontrer que si I est un idéal d’un anneau A alors la relation
binaire R est une relation d’équivalence :

∀(x, y) ∈ A2, xRy ⇔ x− y ∈ I

L’ensemble des classes d’équivalence pour cette relation a une structure d’anneau, on note cet anneau A/I. C’est de là que
vient la notation Z/nZ.
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Exercice

Soit (A,+,×) un anneau.

1. Dans cette question, on suppose que pour tout x ∈ A, x2 = x.

(a) Démontrer que : ∀x ∈ A, 2x = 0.

(b) En déduire que A est commutatif.

2. Dans cette question, on suppose que ∀x ∈ A, x3 = x.

(a) Déterminer les éléments nilpotents de A.

(b) Soit c ∈ A tel que c2 = c. Démontrer que c commute avec tous les élements a ∈ A, on pourra pour cela calculer
b2 où b = ca(1− c).

(c) En déduire que pour tout x ∈ A, on a x2 qui commute avec tous les éléments de A.

(d) En déduire que pour tout x ∈ A, on a 2x et 3x qui commutent avec tous les éléments de A.

(e) En déduire que A est commutatif.

Remarque. Plus généralement, le théorème de Jacobson affirme que si dans un anneau A, on a :

∀x ∈ A, ∃n ≥ 2, xn = x

alors A est commutatif.

1. (a) Soit x ∈ A, on peut appliquer l’hypothèse à 1 + x pour obtenir :

1 + x = (1 + x)2 = (1 + x)(1 + x) = 12 + 2x+ x2 = 1 + 2x+ x

Ce qui donne bien 2x = 0.

∀x ∈ A, 2x = 0

(b) Soient (x, y) ∈ A2, on a :

x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y

Ainsi xy + yx = 0. Or d’après la question 1, nous avons xy + xy = 0. En soustrayant ces deux dernières égalités,
nous obtenons bien xy = yx.

A est commutatif

2. (a) Soit x ∈ A, en calculant les premières puissances de x, on a :

x3 = x, x4 = x2, x5 = x3 = x...

On démontre par une récurrence immédiate que pour tout n ∈ N∗, on a : xn ∈ {x, x2}. Ainsi, si x est nilpotent
alors x = 0 ou x2 = 0. Cependant si x2 = 0, on a :

x = x3 = x2x = 0

On en déduit que :

0 est le seul élément nilpotent de A

(b) Puisque c2 = c, on a :

b2 = ca(1− c)ca(1− c) = ca((1− c)c)ca(1− c) = ca(c− c2)a(1− c) = 0

D’après la question précédente, on en déduit que b = 0 puisque b est nilpotent. Or :

b = 0 ⇔ ca(1− c) = 0 ⇔ ca− cac = 0 ⇔ ca = cac

On répète cette méthode avec b′ = (1− c)ac. On a également b′2 = 0 donc b′ = 0 et par suite ac = cac. Finalement
ac = ca et on en déduit que c commute avec tous les éléments deA.
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(c) On a :
(x2)2 = x4 = x3x = x2

On peut appliquer la question précédente avec c = x2 pour en déduire que :

x2 commute avec tous les éléments de A

(d) Soit x ∈ A. On a :
2x = (x+ 1)2 − x2 − 1

ce qui permet de dire que 2x commute avec tous les éléments de A car (x+ 1)2, x2 et 1 commutent avec tous les
éléments de A d’après la question précédente.

D’autre part, on a : (x+ 1)3 = (x+ 1) et en développant :

(x+ 1)3 = x3 + 3x2 + 3x+ 1 = x+ 3x2 + 3x+ 1 = 3x3 + 4x+ 1

Ces deux égalités impliquent 3x = −3x2, ainsi 3x commute avec tous les éléments de A car −3x2 commute avec
tous les éléments de A d’après la question précédente.

2x et 3x commute avec tous les éléments de A

(e) Enfin x = 3x − 2x commute avec tous les éléments de A car c’est le cas de 3x et 2x. Étant donné que x est
quelconque, on en déduit que A est commutatif.

A est commutatif
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