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% Soit (A, +, x) un anneau tel que :
V(z,y) € A%, (xzy=0=2=0o0uy=0)

Montrer que :
V(a,b) € A% (ab=1= ba =1)

Corrigé : Soient (a,b) € A? tels que ab=1. On a :
a(ba — 1) =aba —a=(ab—1)a=0
Ainsi a =0 ou ba = 1.
e Si ba = 1, on a le résultat voulu.

e Sia=0alors ab=0 et comme ab=1,0n a: 0=1, dans ce cas ba = b x 0 = 0 = 1 comme voulu.

Soit * la loi de composition interne sur R définie par :
V(z,y) eR? zxy=z+y+az’y

Vérifier que * est commutative.
La loi * est-elle associative 7
Montrer que * admet un neutre et déterminer cet élément neutre.

Résoudre I'équation d’inconnue z € R : 1 xxz = 0.

et W=

Résoudre 'équation d’inconnue z € R : 1 xxz = 1.

Corrigé :
1. Soient (z,y) € R? on a :
y*z:y+x+y2x2:x+y+x2y2:aj*y

’ * est commutativel

2. Ona:
(1) s (—1)=1+1+121H % (1) =3%(-1) =3+ (-1)+3%(-1)2 =11
1

Lx(1x (1) =151+ (-1)+13(-1)?) =1%1=1+1+1*1>=3

Ce contre exemple démontre que :

’ * n’est pas associativel

3. Soit € R, on a tout de suite :
rx0=0xzx =z

0 est le neutre de *

4. Soit z € R, on a :
lxz=0&1+a+2”=0

Cette équation du second degré n’a pas de solution dans R car son discriminant est strictement négatif.

S=10

5. Soit x € R, on a :
lsz=1oz+22=0

Cette équation a pour solutions —1 et 0.
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% Soit G un groupe, e son élément neutre et (a,b) € G? tels que : ba = ab?® et ab = ba®. Démontrer que a = b = e.

Corrigé : Ona:
ba = ab?® = (ab)b = (ba?)b = (ba)(ab)

On peut simplifier par ba puisque dans un groupe tout élément est inversible donc régulier pour obtenir : e = ab. Ainsi
b=a""! et on a aussi ba = e. On en déduit que :

e=ab=ba’> = (ba)a = ea = a
Cequidonnea=cetb=a'=e¢ ! =e.
a=b=c¢e

* Soit (A, +, x) un anneau. On suppose que pour tout z € A, on a : 22 = x.

1. Démontrer que : Vx € A, 2x = 0.

2. En déduire que A est commutatif.

Corrigé :
1. Soit & € A, on peut appliquer '’hypothése a 1 + x pour obtenir :

l+r=>01+2)?=0+2)(1+2)=1"+20+2°=1+20+x

Ce qui donne bien 2z = 0.

’VxEA, 2m:0|

2. Soient (z,y) € A%, on a :
c+y=@+y’=2"+ay+tyr+y’=a+aytyz+y

Ainsi zy + yx = 0. Or d’apres la question 1, nous avons xy + zy = 0. En soustrayant ces deux dernieres égalités, nous
obtenons bien xy = yzx.

’ A est commutatif |

%% Soit (E, x) un magma associatif. On suppose qu'’il existe a € E tel que :
Vye F, Jx € E, y=azxa

1. Démontrer que FF admet un neutre.

2. Démontrer que a est inversible et donner a ™.

Corrigé :
1. On peut appliquer ’hypothese & a (& la place de y), on sait qu'il existe b € F tel que a = aba. Soit y € F, on lui associe
x € F tel que y = axa. En utilisant I'associativité, on a :

(ab)y = (ab)(aza) = (aba)(za) = axa =y

y(ba) = (aza)(ba) = ax(aba) = axa =y

Ainsi ab est un neutre a gauche et ba est un neutre a droite. On a alors (ab)(ba) = ab car ba est neutre a droite et
(ab)(ba) = ba car ab est neutre & gauche d’out ab = ba. On pose e = ab, qui est bien le neutre de x.

’ab est le neutre de x |
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2. Ona:
a(bab) = (ab)(ab) = ee =e

(bab)a = baba = ee = e

Ainsi a est inversible et a”! = bab.

@ * %% Soit A un anneau non nul et M = {z € A, x> = z}. Démontrer que si M est fini alors son cardinal est pair.

Corrigé : Soit 2 € M, c’est-a-dire 22 = z. On a :
1-2)P=1-224+2*=1-22+2=1-2

ainsi 1 — z € M. Ce qui démontre que dans ’ensemble M chaque élément x peut étre appareillé avec 1 — x, cela va nous
permettre de conclure que le cardinal de M est pair lorsque M est fini. Il reste juste a démontrer que x et 1 — x sont
distincts afin de pouvoir compter effectivement les éléments de M par paires. Soit € M, par 'absurde si x = 1 — x alors
r=a%=x—22=0, cependant si = 0 alors = n’est pas égal & 1 — z puisque 0 # 1 dans un anneau non nul.

Si M est fini alors M est de cardinal pairl

%% Soit A un anneau et (z,y) € A% on suppose que 1 — zy est inversible. Démontrer que 1 — yz est inversible.

Corrigé : Par hypothese, il existe v € A tel que :
v(l—ay)=1 vey =v—1
=
(I—zyv=1 xyv =v—1
On a :
(1 +yvz)(l —yx) =1+ yvr —yx —yvaeyr = 1 +yvz —yx —y(v — Lz =1
On vérifie de méme que (1 — yz)(1 4 yvx) = 1. On a bien démontré que 1 — yz est inversible et (1 — yz)~! = 1 + yva.

EIpe

1. Démontrer que A = {a + bv/2, (a,b) € Q?} est un corps.
2. Démontrer que B = {a + bv'2 + ¢V/3, (a,b) € Q?} n’est pas un corps.

Corrigé :

1. Montrons pour cela que A est un sous-corps de R pour les opérations usuelles. Dans cette question, on note z = a+bv/2
et y = c+ dv?2 avec (a,b,¢,d) € Q*.

e Déja A CR

e -0=0-+0V2 ainsi 0 € A.
Onaz+y=(a+c)+(b+dV2e A
—_ =
€Q €Q
Ona:—z= —a +(-b)V2e A
~—

~—~—
€Q cQ

On en déduit que (A, +) est un sous-groupe de (R, +).

e -1 =1+ 0v2 appartient & A.
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e-Ona:
zy = (a4 bV2) x (¢ + dV2) = ac+ 2bd + (ad + be)vV2 € A
—— ——

cQ cQ

On en déduit que (A, +, X) est un sous-anneau de (R, +, x).
. . 1
e Soit z € A\ {0}, nous devons démontrer que — € A. On a :
x

1 a—b\/ﬁ_ a b Vae A

a+bV/2 a2 —202  a2—2b2 a2 22
—_— Y
€Q €Q

Au cours de ce calcul, on a multiplié par @ — bv/2 qui est non nul car sinon :
e soit b = 0 et dans ce cas a = 0 ce qui est absurde puisque = # 0.

a
e s0it b # 0 et dans ce cas : V2 = 7 ce qui est absurde car v/2 est irrationnel.

2. L’ensemble B n’est pas stable par multiplication, en effet V2 x v3 = V6 ¢ B. En effet, raisonnons par 'absurde en
supposant que V6 = p + ¢v/2 + /3 avec (p,q,7) € Q. On a:

VB-p=qV3+ 3
On éleve au carré :
6+ p* — 2\/619 =2¢> +3r + 2q7°\/6
Ce qui donne :
6+ p* — 2¢% — 3r2 = (2¢r + 2p)V6

6+ p? —2¢% — 3r2

2qr + 2p
et par suite 6 +p? — 2¢% — 312 = 0, c’est-a-dire (2— 7”2)((12 —3) = 0. Cette derniére relation est absurde car elle implique
que 7 = £v/2 ou ¢ = +V/3 ce qui n’est pas le cas car ¢ et r sont rationnels.

Si jamais 2qr + 2p # 0 alors V6 = ce qui est absurde car V6 est irrationnel. On a donc 2¢r +2p = 0

’ B n’est pas un corps I
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Probleme

Dans tout I’exercice (A, +, x) désigne un anneau commutatif non nul. On note 0 et 1 les éléments neutres respectifs de
laddition et de la multiplication. Pour tous (x,y) € A2, on s’autorise & noter zy au lieu de z x y. On dit qu’une partie, I,
de A est un idéal de A si et seulement si les trois conditions suivantes sont vérifiées :

iyoelrl
i) V(z,y) € I?, a+y el
)yvVie A, Ve el, \x el

1. Un exemple. On se place dans anneau F(R,R) des fonctions de R dans R muni de Paddition et de la multiplication
usuelles sur les fonctions. Pour tout a € R, on pose :

Ia = {f Ef(R7R)7 f(a’) = 0}
Démontrer que I, est un idéal de F(R,R).
2. Idéaux de Z. Dans cette question, on considere I’anneau Z muni de ’addition et la multiplication usuelles.

(a) Soit n € Z, démontrer que nZ = {nk, k € Z} est un idéal de Z.
(b) Soit I un idéal de Z. On suppose que I # {0}.

i. Justifier que n = min(/ N N*) existe.
ii. Soit a € I, démontrer que le reste de la division euclidienne de a par n est nul. En déduire que I C nZ.
iii. Réciproquement démontrer que nZ C I.

(¢) Caractériser les idéaux de Z.

3. Idéaux et éléments inversibles. Démontrer que si I est un idéal de A alors :

I contient un élément inversible < I = A

4. Idéaux et morphismes. Soit f : A — A un morphisme d’anneaux, avec A un anneau également commutatif et non
nul.

(a) Soit J un idéal de A, démontrer que f~'(J) est un idéal de A.
(b) Trouver un exemple montrant que si I est un idéal de A, f(I) n'est pas toujours un idéal de A.

5. Radical d’un idéal. Soit I un idéal de A. On appelle radical de I et on note v/I Pensemble :
VIi={zeA IneN, z"el}

(a) Démontrer que I C V1.

(b) Démontrer que VT est un idéal de A. On pensera & utiliser la formule du binéme de Newton.

(c) Vérifier que \/ VI = VI

(d) Dans cette question A = Z. Déterminer ’ensemble des entiers naturels m € Z tels que VmZ = mZ.

6. Idéaux premiers. On dit qu'un idéal I est premier si et seulement si :

V(z,y) € A*>, sycI=xcTouycl

(a) Donner un idéal premier de Z.
(b) On suppose que tous les idéaux de A sont premiers. Démontrer que A est intégre puis que A est un corps.
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Corrigé du probleme

1. Soit a € R, I, est inclus dans F(R,R) par définition. Il reste & vérifier les trois conditions requises pour que I, soit un
idéal :
» i) Notons 6 la fonction nulle de R dans R, on a 6(a) = 0 ainsi 6 € I,.

» ii) Soient (f,g) € I?, c’est-a-dire que f(a) = g(a) = 0. On a (f + g)(a) = 0 ainsi f + g € I,.

» iii) Soit A € F(R,R) et f € I, c’est-a-dire que f(a) =0. On a (Af)(a) = A(a)f(a) =0 ainsi Af € I,.

2.

I, est un idéal de F(R,R) |

(a) Soit n € Z, par définition nZ C Z. Vérifions les trois propriétés requises pour avoir un idéal :

(b)

» i) On a: 0 € nZ puisque 0 =n x 0.

» ii) Soient (z,y) € (nZ)?, il existe (k, k') € Z? tels que z = nk et y = nk’. Ainsi 2 +y = n(k + k') € nZ puisque
k+k €Z.

» iii) Soient A\ € Z et x € nZ, il existe k € Z tel que x = nk. On a : Az = n(Ak) € nZ puisque Ak € Z.

i

ii.

iii.

’nZ est un idéal de Z|

Comme l'idéal I # {0}, il existe un entier non nul appartenant & I, notons-le m.

e Sim >0, il appartient & I N N*,

e Sim <0,ona—1xm=—m eI dapres la condition iii) et —m > 0.

Ce raisonnement démontre que I N N* est non vide et bien sir I N N* C N. Or toute partie non vide de N
posseéde un minimum.

’n = min(I NN*) existel

Soit a € I, effectuons la division euclidienne de a par n qui est bien non nul par définition. Il existe (g,r) € 72
tels que :
a=qgqn+ravec0<r<n

On an € I donc (—q) x n € I d’apres la propriété iii). De plus comme a € I, on ar = a+ (—gn) € I d’aprés
la propriété ii).

Sir#0,onareclNN*"etr<mn,ceciest absurde comme n est le minimum de 7 N N*. On a nécessairement
r = 0 et par suite a = gn € nZ. Ce qui démontre que :

Réciproquement, soit x € nZ, il existe k € N tel que x = nk. Comme n € I, la propriété iii) implique que
x = nk € I. Par double inclusion, on a démontré que :

I =nZ

(¢) C’est un bilan des questions 2.(a) et 2.(b), les idéaux de Z sont exactement les parties de Z de la forme nZ ou
n € N. La question 2.(a) démontre en effet que nZ est un idéal de Z et la question 2.(b) démontre la réciproque, a
savoir qu’un idéal de Z s’écrit sous la forme nZ ot n € N*. Enfin il faut tenir compte de 'idéal {0} qui est obtenu
pour n = 0.

’IidéaldeZ@HneN, I=nZ

3. On procede par double implication.

4.

(=) On suppose que I est un idéal de A qui contient un élément inversible que ’on note x. D’apres la propriété iii),
onal=a"'z e puisque z~' € A Soit A€ A, ona A= \x1¢& I toujours d’apres la propriété iii) puisque 1 € I. Ce
qui démontre que A C I et par définition I C A d’ou I = A.

(<) Réciproquement si I = A (qui est bien un idéal de A), on a 1 € I qui est inversible.

’ I contient un élément inversible < I = A

(a) On rappelle la caractérisation de I'image réciproque qui va nous servir dans toute cette question, pour tout z € A :

ref NI e flz)ed
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On a f~1(J) C A. Vérifions les trois conditions requises pour que f~'(.J) soit un idéal de A :

» i) 04 € f7'(J) car f(04) =05 € J car f est un morphisme et J est un idéal de A.

» ii) Soient (z,y) € f~ Y, ona flz+y) = fz )+ f(y) € J puisque f(z) et f(y) sont deux éléments de J qui
est un idéal de A. Ce qui démontre que z +y € f~ L.

» iii) Enfin, soit A€ Aet z € f~1(J), ona f(Ax) = f(\)f(x). Or f(\) € A et f(z) € J, d’apres la propriété iii)
cela implique que f(Az) € J et par suite Az € f~1(J).

f_l(J) est un idéal de A

Considérons le morphisme suivant, avec Z et R munis de ’addition et la multiplication usuelles :

f ' Z — R
x =z

Le morphisme f va fournir un contre exemple, prenons I = Z qui est bien un idéal de Z, par contre f(Z

1 1
n’est pas un idéal de R puisque la propriété iii) n’est pas vérifiée. En effet 3 € Ret 1 € Z pourtant 3 x1=

’ L’image directe d’un idéal par un morphisme d’anneaux n’est pas toujours un idéal I

Soitme[,onax:xlEIainsixEﬁavecn:l.

[c V]|

Par définition, on a : VI C A. Il reste & vérifier les trois propriétés :

»i)0evVIicar0=0'el.

» ii) Soient (z,y) € (VI)?, cC’est-a-dire qu’il existe (m,n) € (N*)? tels que 2™ € I et y™ € I. Comme I'anneau A
est commutatif, x et y commutent et on peut appliquer la formule du binéme de Newton :

m-+n g m+n k. _m+n—k S m+n k m+n—k g m+n k m+n—k
(@ +y) - Z o )tY - Z o)ty + Z o)t

k=0 k=0 k=m+1

) ©))

e Etude de (1). Ona 0 <k <m < n<m+n—k < m+n. Ceci montre que l'on peut mettre y" en
facteur dans la somme (1) :

i(m+n) k m+n k i<m+n) k. m—k

k=0

A

L’expression (1) appartient & I d’apreés la propriété iii) puisque c¢’est le produit d’un élément A de A par y" qui
appartient a I.
e Etude de (2). La aussi, on peut réécrire la somme (2) en mettant ™ en facteur :

m+n m—+n
m-4+n k m+n—k ™ m-4+n k—m m+n—k
> (")t ) G E

k=m+1 k=m+1

On conclut que méme que précédemment que (2) appartient a I puisque c’est le produit d’un élément de I par
un élément de A.

Ainsi (z + )™ = (1) + (2) est un élément de I comme somme de deux éléments de I d’apres la propriété ii).
Ce qui démontre que z +y € V.
» iii) Enfin, soit A € Aet z € V1, il existe n € N* tel que 2" € I. En utilisant le fait que A est commutatif, on a :

(Ax)" = A"z™ € I d’apres la propriété iii) car z" € T

’ VT est un idéal de I
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(c)

D’apres la question (a), si I est un idéal de A alors I C V1. En appliquant cette propriété & v/I qui est bien un

idéal d’apres la question précédente, on a VI C \/ VI. Pour l'autre inclusion, prenons z € \ VI, cela signifie qu’il
existe n € N* tel que 2" € V1. Ceci implique l'existence de p € N* tel que (z™)P € 1, c’est-a-dire ™ € I. Comme
np € N*, ceci démontre que z € V1. Par double inclusion, on conclut que :

VI=VI

Sim =0oum =1, on a bien vV'mZ = mZ. On remarque également que d’apres la question (a), on a toujours
mZ C VmZ.

» Supposons que m > 2 soit divisible par le carré d’un entier, c’est-a-dire qu’il existe un entier d > 2 tel que
m = d*k avec k € N. On a dk € v'mZ puisque (dk)* = mk € mZ, pourtant dk ¢ mZ puisque m ne divise pas dk.
Ceci montre que si m est divisible par le carré d’'un entier alors vmZ ¢ mZ et par contraposition si VmZ ¢ mZ
alors m n’est pas divisible par le carré d’un entier.

» Réciproquement supposons que m > 2 ne soit pas divisible par le carré d’un entier. Démontrons que VmZ c md.,
soit & € VmZ, il existe n € N* tel que 2" € mZ. Ceci implique que m divise 2. Soit p un nombre premier qui
divise m alors p|z™ donc p|x et par suite m|z puisque p apparait & la puissance 1 dans la décomposition en facteurs
premiers de m. Or m|z < x € mZ, ce qui démontre 'inclusion souhaitée.

vVmZ = mZ si et seulement si m n’est pas divisible par le carré d’un entier

L’idéal 2Z est un idéal premier de Z. En effet, si x et y sont deux entiers relatifs tels que xy € 27Z, c’est-a-dire que
2 divise zy, ceci implique que 2 divise x ou 2 divise y. Ce qui démontre que = € 27Z ou y € 2Z.

’ Plus généralement, si p est un nombre premier alors pZ est un idéal premier de Z

I = {0} est un idéal de A et par hypothese, il est premier. Ainsi pour (z,y) € A%, on a :
zy € {0} = z € {0} ouy € {0}

C'est-a-dire xy = 0 = = = 0 ou y = 0. Or "anneau A est supposé commutatif, non nul et le calcul précédent
montre que A est intégre. Soit © € A\ {0}, démontrons que x est inversible ceci impliquera que A est un corps.
On considere ensemble z2A = {z?y, y € A}, on montre sans difficulté que 2% A est un idéal de A. Cet idéal est
premier d’aprés I’hypothese de Iénoncé, on a 22 € 2°A donc = € 22 A, c’est-a-dire que = = 2%y ot y € A. Or
'anneau A est intégre comme nous I’avons démontré ci-dessus donc z = 2%y et = # 0 implique que 1 = zy. Ce
qui démontre que z est inversible.

’A est un corps

La notion d’idéal est fondamentale en algébre. On peut démontrer que si I est un idéal d’un anneau A alors la relation
binaire R est une relation d’équivalence :

Y(z,y) € A%, 2Ry =z —y el

L’ensemble des classes d’équivalence pour cette relation a une structure d’anneau, on note cet anneau A/I. C’est de la que
vient la notation Z/nZ.
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Exercice
Soit (A4, +, X) un anneau.
1. Dans cette question, on suppose que pour tout x € A, % =z

(a) Démontrer que : Vo € A, 2z =0.
(b) En déduire que A est commutatif.

2. Dans cette question, on suppose que Vz € A4, z° = x.

(a) Déterminer les éléments nilpotents de A.

(b) Soit ¢ € A tel que ¢ = ¢. Démontrer que ¢ commute avec tous les élements a € A, on pourra pour cela calculer
b% ot b = ca(l — c).

(¢) En déduire que pour tout € A, on a 22 qui commute avec tous les éléments de A.

(d) En déduire que pour tout € A, on a 2z et 3z qui commutent avec tous les éléments de A.

(e) En déduire que A est commutatif.

Remarque. Plus généralement, le théoréme de Jacobson affirme que si dans un anneau A, on a :
Vee A, In>2, 2" ==z

alors A est commutatif.

1. (a) Soit z € A, on peut appliquer I’hypotheése & 1 + x pour obtenir :
l+z=0+2)?=0+2)(1+z)=1+20+2*=1+20+2z

Ce qui donne bien 2z = 0.

’VxGA, 2x:0|

(b) Soient (x,y) € A% on a :
rty=(e+y’=a®+aytyrty’=z+aytyrty

Ainsi zy + yx = 0. Or d’apres la question 1, nous avons zy + xy = 0. En soustrayant ces deux dernieres égalités,
nous obtenons bien xy = yx.

’ A est commutatif

2. (a) Soit x € A, en calculant les premieres puissances de z, on a :

On démontre par une récurrence immédiate que pour tout n € N*, on a : 2 € {z,2%}. Ainsi, si x est nilpotent
alors © = 0 ou 2 = 0. Cependant si 22 =0, on a :

r=2=2%x=0

On en déduit que :

’0 est le seul élément nilpotent de Al

(b) Puisque ¢ = ¢, on a :
b? = ca(l — ¢)ca(l — ¢) = ca((1 — ¢)c)ca(l — ¢) = ca(c — c*)a(l —¢) = 0
D’apres la question précédente, on en déduit que b = 0 puisque b est nilpotent. Or :
b=0<ca(l—c)=0< ca—cac=0< ca = cac

On répete cette méthode avec ' = (1 —c)ac. On a également b2 = 0 donc b’ = 0 et par suite ac = cac. Finalement
ac = ca et on en déduit que ¢ commute avec tous les éléments deA.
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(c)

On a:

(:1:2)2 =t =23 = 22

On peut appliquer la question précédente avec ¢ = 22 pour en déduire que :

’ 22 commute avec tous les éléments de A

Soit z € A. On a :
20 = (x+ 1) -2 -1

ce qui permet de dire que 2z commute avec tous les éléments de A car (z + 1)%, 2% et 1 commutent avec tous les

éléments de A d’apres la question précédente.

3

D’autre part, on a : (z +1)° = (2 + 1) et en développant :

(z+1P =2 +322 +3x+1=2+322 +32+1 =323+ 4o + 1

Ces deux égalités impliquent 3z = —3z2, ainsi 3z commute avec tous les éléments de A car —3z? commute avec

tous les éléments de A d’apres la question précédente.

2z et 3x commute avec tous les éléments de A

Enfin z = 3z — 22 commute avec tous les éléments de A car c’est le cas de 3z et 2z. Etant donné que x est
quelconque, on en déduit que A est commutatif.

A est commutatif
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