1-Donner les solutions à valeurs dans $\mathbb R$ et définies sur $\mathbb R$ de :

$$\begin{cases} 3y'' - 4y' + y = 1 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

2-Résoudre sur \mathbb{R} l'équation (E) : $y'' + 4xy' + (3 + 4x^2)y = 0$. On posera $z: x \mapsto y(x)e^{x^2}$.

3-Trouver les solutions de : $y^{(3)} - 6y'' + 11y' - 6y = x$.

1-Donner les solutions à valeurs dans $\mathbb R$ et définies sur $\mathbb R$ de :

$$\begin{cases} 3y'' - 4y' + y = 1 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Réponse : D'après le théorème de Cauchy-Lipschitz, ce problème admet une unique solution. La fonction constante égale à 1, définie sur \mathbb{R} , convient : c'est donc la seule solution de ce problème.

2-Résoudre sur \mathbb{R} l'équation (E) : $y'' + 4xy' + (3 + 4x^2)y = 0$. On posera $z : x \mapsto y(x)e^{x^2}$.

Réponse : Pour tout $x \in \mathbb{R}$, on a : $y(x) = z(x)e^{-x^2}$. Supposons que y est deux fois dérivable sur \mathbb{R} , dans ce cas z est également deux fois dérivable sur \mathbb{R} et :

$$y': x \mapsto e^{-x^2}(z'(x) - 2xz(x))$$
$$y'': x \mapsto e^{-x^2}(z''(x) - 4xz'(x) + (4x^2 - 2)z(x))$$

On remplace dans l'équation :

On en déduit que $z: x \mapsto k_1 \cos(x) + k_2 \sin(x)$ et

$$y$$
 solution de (E)
 \Leftrightarrow

$$\forall x \in \mathbb{R}, \ y''(x) + 4xy'(x) + (3 + 4x^2)y(x) = 0$$
 \Leftrightarrow

$$\forall x \in \mathbb{R}, \ e^{-x^2}(z''(x) + z(x)) = 0$$
 \Leftrightarrow

$$\forall x \in \mathbb{R}, \ z''(x) + z(x) = 0$$

 $y: x \mapsto (k_1 \cos(x) + k_2 \sin(x))e^{-x^2}$ définies sur \mathbb{R} avec $(k_1, k_2) \in \mathbb{R}^2$.

◆ロト ◆昼 ト ◆ 昼 ト ■ 9 へ ○

3-Trouver les solutions de (E): $y^{(3)} - 6y'' + 11y' - 6y = x$.

Réponse : L'équation caractéristique s'écrit :

 $R(X) = X^3 - 6X^2 + 11X - 6 = (X - 1)(X - 2)(X - 3) = 0$, il y a trois solutions réelles : 1, 2 et 3. Les solutions de l'équation homogène sont les fonctions :

$$x \mapsto Ae^x + Be^{2x} + Ce^{3x}$$
 où $(A, B, C) \in \mathbb{R}^3$

On cherche une solution particulière sous la forme $y_0: x \mapsto \alpha x + \beta$ car le second membre est de la forme $P(x)e^{mx}$ avec m=0 et $R(0)\neq 0$. On trouve $\alpha=-\frac{1}{6}$ et $\beta=-\frac{11}{36}$. Finalement les solutions de (E) définies sur $\mathbb R$ sont de la forme :

$$x \mapsto Ae^{x} + Be^{2x} + Ce^{3x} - \frac{1}{6}x - \frac{11}{36}$$
 où $(A, B, C) \in \mathbb{R}^{3}$

◆□▶◆□▶◆豆▶◆豆▶ 豆 かくで