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Exercice 1 (1h30)
On fixe dans tout ce problème A et B deux parties d’un ensemble E. On rappelle que P(E) désigne l’ensemble des
parties de E et ∅ désigne l’ensemble vide. Pour toute partie X de E, on pose f(X) = (X ∩A)∪B. On définit ainsi
une application de P(E) dans P(E). Si X est une partie de E, on pourra noter X pour désigner le complémentaire
de X dans E.

1. Soit X et Y deux parties de E.

(a) Montrer que : X ∩ Y = X si et seulement si X ⊂ Y .

(b) Montrer que : X ∪ Y = X si et seulement si Y ⊂ X.

2. Les questions suivantes présentent quelques exemples de calculs avec la fonction f .

(a) On suppose, pour cette question, que A = ∅, calculer f(X) pour tout X ∈ P(E).

(b) On suppose, pour cette question, que B = E, calculer f(X) pour tout X ∈ P(E).

(c) Dans le cas général, calculer f(∅), f(A), f(B) et f(E).

3. Montrer que f est croissante au sens de l’inclusion, c’est-à-dire que :

∀(X,X ′) ∈ P(E)2, X ⊂ X ′ ⇒ f(X) ⊂ f(X ′).

4. Soit Y une partie de E.

(a) Montrer que si Y admet un antécédent par f alors : B ⊂ Y ⊂ (A ∪B).

(b) Montrer que si B ⊂ Y ⊂ (A ∪B) alors f(Y ) = Y .

(c) En déduire que Y admet un antécédent par f si et seulement si f(Y ) = Y .

5. Résoudre l’équation d’inconnue X une partie de E : f(X) = A.

6. Résoudre l’équation d’inconnue X une partie de E : f(X) = B.

7. Pour les questions qui suivent, on pensera à utiliser les résultats de la question 2.(c)

(a) Montrer que f est constante si et seulement si A ⊂ B.

(b) Montrer que f est surjective si et seulement si A = E et B = ∅.
(c) Montrer que f est injective si et seulement si A = E et B = ∅.

8. Que dire de l’application f ◦ f ?
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Corrigé : Avant tout, un petit dessin ! Voici, en hachuré, f(X) dans le cas général :

Certaines démonstrations à venir sont beaucoup plus aisées à suivre à l’aide d’un dessin de ce type.

1. (a) Démontrons cette équivalence par double implication. Soient X et Y deux parties de E.
(⇒) On supposons que X ∩ Y = X, démontrons que X ⊂ Y . Soit x ∈ X, comme X = X ∩ Y , on a
x ∈ X ∩ Y . Ce qui démontre en particulier que x ∈ Y . D’où X ⊂ Y .
(⇐) Réciproquement, on suppose que X ⊂ Y , démontrons que X∩Y = X. Pour démontrer ceci, on procède
par double inclusion :

• L’inclusion (X ∩ Y ) ⊂ X est toujours vraie d’après le cours.
• Soit x ∈ X, comme par hypothèse X ⊂ Y , on a x ∈ Y . Finalement x ∈ X ∩ Y . D’où X ⊂ (X ∩Y ).

On conclut par double inclusion que X ∩ Y = X.

∀(X,Y ) ∈ P(E)2, X ∩ Y = X si et seulement si X ⊂ Y

(b) On pourrait tout à fait appliquer une méthode très similaire à celle de la question précédente, mais il est
possible d’aller plus vite. Soient X et Y deux parties de E, on applique le résultat précédent à X et Y . On
a :

X ∩ Y = X si et seulement si X ⊂ Y

On passe au complémentaire dans cette relation :

X ∩ Y = X si et seulement si Y ⊂ X

Ce qui se simplifie en :
X ∪ Y = X si et seulement si Y ⊂ X

On a démontré que :

∀(X,Y ) ∈ P(E)2, X ∪ Y = X si et seulement si Y ⊂ X

2. (a) Soit X ∈ P(E), on a f(X) = (X ∩ ∅) ∪B = ∅ ∪B = B.

Si A = ∅, f est la fonction constante égale à B

(b) Soit X ∈ P(E), on a f(X) = (X ∩A) ∪ E = E.

Si B = E, f est la fonction constante égale à E
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(c) • On a f(∅) = (∅ ∩A) ∪B = B.
• On a f(A) = (A ∩A) ∪B = A ∪B.
• On a f(B) = (B ∩A) ∪B = B d’après la question 1.(b) puisque B ∩A ⊂ B.
• On a f(E) = (E ∩A) ∪B = A ∪B.

f(∅) = B, f(A) = A ∪B, f(B) = B et f(E) = A ∪B

3. Soient X et X ′ deux parties de E. On suppose que X ⊂ X ′, ce qui implique que (X ∩ A) ⊂ (X ′ ∩ A), d’où
[(X ∩A) ∪B] ⊂ [(X ∩A) ∪B]. On a démontré que :

∀(X,X ′) ∈ P(E)2, X ⊂ X ′ ⇒ f(X) ⊂ f(X ′)

4. (a) On suppose que Y admet un antécédent par f , c’est-à-dire qu’il existe X ∈ P(E) tel que f(X) = Y , d’où
(X ∩A) ∪B = Y .
• Montrons que B ⊂ Y . Soit x ∈ B, on a en particulier x ∈ [(X ∩A) ∪B], d’où x ∈ Y .
• Montrons que Y ⊂ (A ∪ B). On a Y = (X ∩ A) ∪ B = (X ∪ B) ∩ (A ∪ B), ce qui démontre bien que
Y ⊂ (A ∪B).

Si Y admet un antécédent par f alors B ⊂ Y ⊂ (A ∪B)

(b) Soit Y une partie de E telle que B ⊂ Y ⊂ (A ∪B), montrons que f(Y ) = Y . On a :

f(Y ) = (Y ∩A) ∪B = (Y ∪B) ∩ (A ∪B) = Y ∩ (A ∪B)︸ ︷︷ ︸
car B⊂Y

= Y

La dernière égalité étant vraie car Y ⊂ (A ∪B).

Si B ⊂ Y ⊂ (A ∪B) alors f(Y ) = Y

(c) C’est une application des deux questions précédentes. Soit Y une partie de E, on suppose que Y admet un
antécédent par f , d’après la question 4.(a) cela implique que B ⊂ Y ⊂ A ∪ B. Ainsi d’après la question
4.(b), on a f(Y ) = Y . Réciproquement si f(Y ) = Y , il est clair que Y a un antécédent, lui même !

Y admet un antécédent par f si et seulement si f(Y ) = Y

5. Raisonnons par analyse synthèse.
• Analyse. On suppose avoir trouvé X une partie de E telle que f(X) = A. On a (X ∩A)∪B = A, ceci implique
que B ⊂ A. À ce stade de l’étude, on sait que si B n’est pas inclus dans A alors l’équation n’a pas de solution.
On suppose pour continuer que B ⊂ A, l’égalité (X ∩ A) ∪ B = A implique que (A \ B) ⊂ X. Pour vous en
convaincre, il est très utile de faire un dessin.
• Synthèse. Toujours en supposant que B ⊂ A, considérons une partie X de E telle que (A \ B) ⊂ X. On a
(A \B) ⊂ X ∩A donc A ⊂ (X ∩A) ∪B. D’autre part (X ∩A) ∪B ⊂ A puisque B ⊂ A. Les deux propositions
soulignés impliquent que f(X) = A. En résumé, si l’on note S l’ensemble des solutions de l’équation f(X) = A :{

S = ∅ si B 6⊂ A
S = {X ∈ P(E), (A \B) ⊂ X} si B ⊂ A
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6. On raisonne encore par analyse-synthèse.
• Analyse. On suppose qu’il existe X ∈ P(E) telle que f(X) = B, c’est-à-dire (X ∩A) ∪B = B. Ceci implique
que (X∩A) ⊂ B, on peut aussi dire queX ne contient pas d’éléments de A∩B. On en déduit queX∩(A∩B) = ∅.
• Synthèse. Réciproquement supposons que X ∩ (A ∩B) = ∅ où X est une partie de E alors (X ∩A) ⊂ B donc
(X ∩A) ∪B = B. Ce qui démontre que f(X) = B.
L’ensemble des parties X de E vérifiant f(X) = B est :

{X ∈ P(E), X ∩ (A ∩B) = ∅}

7. (a) Pour démontrer cette équivalence, raisonnons par double implication.
(⇒) Supposons f constante, en particulier f(∅) = f(A), d’après la question 2.(c) cela implique que
B = A ∪B. Ce qui démontre d’après la question 1.(b) que A ⊂ B.
(⇐) Réciproquement supposons que A ⊂ B et donnons-nous X une partie de E. On a (A ∩X) ⊂ A ⊂ B,
ce qui permet de dire que f(X) = (A ∩X) ∪B = B. La fonction f est constante égale à B.

f est constante si et seulement si A ⊂ B

(b) Démontrons là aussi cette équivalence par double implication.
(⇒) On suppose f surjective ce qui signifie que toute partie Y de E possède un antécédent par f . D’après
la question 4.(c) ceci implique que pour tout Y ∈ P(E), f(Y ) = Y . En particulier f(∅) = ∅ et f(E) = E
mais d’après la question 2.(c) f(∅) = B et f(E) = A ∪B. On obtient donc ∅ = B et E = A ∪B.
(⇐) Réciproquement si A = E et B = ∅ alors :

∀X ∈ P(E), f(X) = (X ∩ E) ∪ ∅ = X

Ceci démontre que tout élément a un antécédent, lui même ; par suite f est bien surjective.

f est surjective si et seulement si A = E et B = ∅

(c) Pour démontrer cette équivalence, on procède par double implication.
(⇒) On suppose que f est injective. D’après la question 2.(c) on a f(∅) = f(B) et f(A) = f(E), ce qui
implique que ∅ = B et A = E.
(⇔) Réciproquement si B = ∅ et A = E, on a vu à la question précédente que ∀X ∈ P(E), f(X) = X. La
fonction f est alors injective puisque c’est l’identité.

f est injective si et seulement si A = E et B = ∅

(d) Soit X ∈ P(E). En utilisant les propriétés de distributivité classiques de ∩ et ∪, on a :

f ◦ f(X) = f(f(X))

=
(

[(X ∩A) ∪B] ∩A
)
∪B

=
(

[(X ∩A) ∩A] ∪ (B ∩A)
)
∪B

= (X ∩A) ∪ (B ∩A) ∪B
= (X ∩A) ∪B car (B ∩A) ∪B = B
= f(X)

f ◦ f = f
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Plus généralement, vous pouvez démontrer que si g est une application d’un ensemble E dans lui même telle que
g ◦ g = g alors :

g injective ⇔ g surjective ⇔ g est l’identité

Une telle application est appelée idempotente.
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Exercice 2 (2h, difficile)

Soient E et F deux ensembles non vides. On note FE l’ensemble des applications de E dans F , P(E) l’ensemble
des parties de E et P(F ) l’ensemble des parties de F . A chaque application f : E → F , on associe les deux
applications :

f̃ : P(E) → P(F ) et f∗ : P(F ) → P(E)

A 7→ f(A) B 7→ f−1(B)

Avec f(A) désignant l’image directe de la partie A par l’application f et f−1(B) désignant l’image réciproque de
la partie B par l’application f .

1. (a) Soit A ∈ P(E) et B ∈ P(F ), rappeler les définitions et caractérisations de f(A) et f−1(B).

(b) Soient (A,A′) ∈ P(E)2, démontrer que f̃(A ∪A′) = f̃(A) ∪ f̃(A′).

(c) Soient (B,B′) ∈ P(F )2, démontrer que f∗(B ∪B′) = f∗(B) ∪ f∗(B′).
2. (a) Montrer que ∀B ∈ P(F ), on a f̃ ◦ f∗(B) = B ∩ f(E).

(b) Simplifier f∗ ◦ f̃ ◦ f∗ et f̃ ◦ f∗ ◦ f̃ .
3. Démontrer les équivalences suivantes :

(a) f injective ⇐⇒ f̃ injective.

(b) f surjective ⇐⇒ f̃ surjective

(c) f injective ⇐⇒ f∗ surjective.

(d) f surjective ⇐⇒ f∗ injective.

4. Etudier l’injectivité et la surjectivité de l’application :

Ψ : FE → P(F )P(E)

f 7→ f̃

5. Soit ϕ : P(F )→ P(E), on dit que ϕ a la propriété (R) si et seulement si ϕ vérifie les 3 assertions suivantes :
(i) ϕ(F ) = E
(ii) ∀X ∈ P(F ), ϕ(F \X) = E \ ϕ(X)

(iii) Pour toute famille (Xi)i∈I de parties de F, ϕ
(⋂

i∈I
Xi

)
=
⋂
i∈I

ϕ(Xi)

(a) Démontrer que pour toute application f : E → F , l’application f∗ a la propriété (R).
On considère dans les questions (b), (c) et (d) une application ϕ ayant la propriété (R). On pose, pour
tout y ∈ F , Ey = ϕ({y}).

(b) Montrer que pour toute famille (Xi)i∈I de parties de F , on a ϕ
(⋃

i∈I
Xi

)
=
⋃
i∈I

ϕ(Xi).

(c) On définit J = {y ∈ F, Ey 6= ∅}. Montrer que la famille (Ey)y∈J est une partition de E.

(d) Expliciter une application f : E → F telle que ϕ = f∗.

6. Etudier l’injectivité et la surjectivité de l’application :

Θ : FE → P(E)P(F )

f 7→ f∗
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Corrigé : On a vu dans le cours les deux notions d’images directes et réciproques, ce problème propose une étude
détaillée de ces concepts.

1. (a) D’après le cours : f(A) = {f(x), x ∈ A}. La caractérisation explicite étant :

y ∈ f(A)⇔ ∃x ∈ A, y = f(x)

D’autre part : f−1(B) = {x ∈ E, f(x) ∈ B}, c’est-à-dire que :

x ∈ f−1(B)⇔ f(x) ∈ B

(b) Cela revient simplement à démontrer que f(A ∪ A′) = f(A) ∪ f(A′), puisque ∀A ∈ P(E), f̃(A) = f(A).
On procède par double inclusion :
? Soit y ∈ f(A ∪A′), il existe x ∈ A ∪A′ tel que f(x) = y. Il y a deux cas à distinguer :
• si x ∈ A alors y = f(x) ∈ f(A). Ce qui démontre que y ∈ f(A) ∪ f(A′).
• si x ∈ A′ alors y = f(x) ∈ f(A′). Ce qui démontre que y ∈ f(A) ∪ f(A′).

Ce qui démontre f(A ∪A′) ⊂ f(A) ∪ f(A′).

? Soit y ∈ f(A) ∪ f(A′), il y a deux cas à distinguer :
• Si y ∈ f(A) alors il existe x ∈ A tel que y = f(x). En particulier x ∈ A ∪A′ d’où
y = f(x) ∈ f(A ∪A′).
• Si y ∈ f(A′) alors il existe x ∈ A′ tel que y = f(x). En particulier x ∈ A ∪A′ d’où
y = f(x) ∈ f(A ∪A′).

Ce qui démontre que f(A) ∪ f(A′) ⊂ f(A ∪A′).
Par double inclusion, on a :

f̃(A ∪A′) = f̃(A) ∪ f̃(A′)

(c) Cela revient simplement à démontrer que f−1(B ∪B′) = f−1(B) ∪ f−1(B′), puisque
∀B ∈ P(F ), f∗(B) = f−1(B). On procède aussi par double inclusion :
? Soit x ∈ f−1(B ∪B′), on a f(x) ∈ B ∪B′, il y a deux cas à distinguer :
• Si f(x) ∈ B alors x ∈ f−1(B). On a bien x ∈ f−1(B) ∪ f−1(B′).
• Si f(x) ∈ B′ alors x ∈ f−1(B′). On a bien x ∈ f−1(B) ∪ f−1(B′).

Ce qui démontre f−1(B ∪B′) ⊂ f−1(B) ∪ f−1(B′).
? Soit x ∈ f−1(B) ∪ f−1(B′), il y a deux cas à distinguer :
• Si x ∈ f−1(B), alors f(x) ∈ B donc en particulier f(x) ∈ B∪B′. C’est-à-dire que x ∈ f−1(B∪B′).
• Si x ∈ f−1(B′), alors f(x) ∈ B′ donc en particulier f(x) ∈ B∪B′. C’est-à-dire que x ∈ f−1(B∪B′).

Ce qui démontre f−1(B) ∪ f−1(B′) ⊂ f−1(B ∪B′).
Par double inclusion, on a :

f∗(B ∪B′) = f∗(B) ∪ f∗(B′)

2. (a) L’égalité énoncée se traduit par f(f−1(B)) = B ∩ f(E) que nous allons démontrer par double inclusion.
? Soit y ∈ f(f−1(B)), il existe x ∈ f−1(B) tel que y = f(x). Or x ∈ f−1(B) donc y = f(x) ∈ B. Ce qui

démontre que f(f−1(B)) ⊂ B. D’autre part, par définition, f−1(B) ⊂ E donc f(f−1(B)) ⊂ f(E).

On a démontré que f(f−1(B)) ⊂ B ∩ f(E).
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? Soit y ∈ B ∩ f(E), il existe x ∈ E tel que y = f(x). Comme y ∈ B, on a x ∈ f−1(B) et par suite
y ∈ f(f−1(B)). Ce qui démontre que B ∩ f(E) ⊂ f(f−1(B)).
Finalement, on a pour tout B ∈ P(F ) :

f̃ ◦ f∗(B) = B ∩ f(E)

(b) D’après la question précédente, pour tout B ∈ P(F ), on a :

f∗ ◦ f̃ ◦ f∗(B) = f∗(B ∩ f(E)) = f−1(B ∩ f(E)) = f−1(B) ∩ f−1(f(E)) = f−1(B) ∩E = f−1(B) = f∗(B)

On vient de démontrer que :
f∗ ◦ f̃ ◦ f∗ = f∗

En utilisant également la question précédente, pour tout A ∈ P(E), on a :

f̃ ◦ f∗ ◦ f̃(A) = f̃ ◦ f∗(f(A)) = f(A) ∩ f(E) = f(A) = f̃(A)

On a utilisé que f(A) ⊂ f(E) puisque A ⊂ E. On vient de démontrer que :

f̃ ◦ f∗ ◦ f̃ = f̃

3. Pour les questions à venir, on utilise un raisonnement par double implication.

(a) (⇒) Soit f injective, démontrons que f̃ est injective. Soient (A,A′) ∈ P(E)2, on suppose que f̃(A) = f̃(A′),
c’est-à-dire que f(A) = f(A′), le but est de montrer que A = A′. Pour cela, prenons x ∈ A, par définition
f(x) ∈ f(A) donc f(x) ∈ f(A′), c’est-à-dire qu’il existe x′ ∈ A′ tel que f(x′) = f(x). Or f est injective, cela
implique que x = x′ et par suite x ∈ A′. On vient de démontrer que A ⊂ A′. En procédant de la même façon,
le problème étant symétrique en A et A′, on obtient A′ ⊂ A. D’où A = A′, ce qui démontre l’injectivité de
f̃ .
(⇐) Soit f̃ injective, démontrons que f est injective. Soit (x, x′) ∈ E2, on suppose que f(x) = f(x′) ; le
but est de démontrer que x = x′. On a f({x}) = f({x′}) puisque les deux sont égaux à {f(x)}, ce qui se
traduit par f̃({x}) = f̃({x′}). Grâce à l’injectivité de f̃ , on en déduit que {x} = {x′} et par suite on a
x = x′. Ce qui démontre l’injectivité de f .
Par double implication, on a :

f injective ⇔ f̃ injective

(b) (⇒) Soit f surjective, montrons que f̃ est surjective. Soit B ∈ P(F ), trouvons-lui un antécédent par f̃ .
Comme f est surjective, on a f(E) = F donc, d’après la question 2.(a), il vient : f̃ ◦ f∗(B) = B ∩ F = B.
Ainsi un antécédent de B par f̃ est f∗(B), on vient de montrer que f̃ est surjective.
(⇐) Soit f̃ surjective, montrons que f est surjective. Soit y ∈ F trouvons-lui un antécédent par f . On sait
que {y} étant un sous-ensemble de F , il possède un antécédent par f̃ , c’est-à-dire qu’il existe A ∈ P(E) tel
que f̃(A) = f(A) = {y}. La partie A ne peut être vide, ainsi prenons x ∈ A, on a bien f(x) = y. Finalement
f est surjective.
Par double inplication, on a :

f surjective ⇔ f̃ surjective
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(c) D’après 3.(a), on a f injective ⇔ f̃ injective, ainsi nous allons démontrer f̃ injective⇔ f∗ surjective pour
avoir l’équivalence souhaitée. Par double implication :
(⇒) Soit f̃ injective, montrons que f∗ est surjective. Pour cela prenons A ∈ P(E) et trouvons-lui un
antécédent par f∗. D’après la question 2.(b), on a f̃ ◦ f∗ ◦ f̃(A) = f̃(A), or f̃ est injective, cette relation
implique que f∗ ◦ f̃(A) = A. On a ainsi f̃(A) qui est un antécédent de A par f∗, d’où la surjectivité de f∗.
(⇐) Soit f∗ surjective, montrons que f̃ est injective. Prenons (A,A′) ∈ P(E)2 et supposons que f̃(A) =
f̃(A′), f∗ étant surjective, A et A′ possèdent un antécédent par f∗ que l’on note respectivement B et B′,
on a :

f̃(A) = f̃(A′)⇔ f̃(f∗(B)) = f̃(f∗(B′))⇒ f∗(f̃(f∗(B))) = f∗(f̃(f∗(B′)))⇔ f∗(B) = f∗(B′)⇔ A = A′

Ceci en utilisant également la simplification obtenue à la question 2.(b) : f∗ ◦ f̃ ◦ f∗ = f∗. Ce qui démontre
l’injectivité de f̃ . Finalement, on a :

f injective⇔ f∗ surjective

(d) Par la même remarque qu’à la question précédente, il suffit de démontrer que f̃ surjective ⇔ f∗ injective
d’après 3.(b). C’est exactement la même façon de faire qu’à la question précédente, puisque les seules
formules utilisées sont celles de la question 2.(b) et elles sont symétriques en f̃ et f∗. On a ainsi :

f surjective⇔ f∗ injective

4. L’application Ψ est injective, en effet supposons que Ψ(f) = Ψ(g) avec f et g deux applications de E dans F .
On a :

Ψ(f) = Ψ(g)⇔ f̃ = g̃ ⇔ ∀A ∈ P(E), f̃(A) = g̃(A)⇔ ∀A ∈ P(E), f(A) = g(A)

En particulier avec A = {x} où x ∈ E, on a f({x}) = g({x}), d’où f(x) = g(x) et par suite f = g. On a
démontré que :

Ψ est injective

Par contre Ψ n’est pas surjective, en effet considérons l’application γ de P(E) dans P(F ) définie par ∀A ∈ P(E),
γ(A) = ∅. Cette application n’a pas d’antécédent par Ψ, par l’absurde si Ψ(f) = γ, alors prenons x ∈ E qui
existe puisque E est non vide. On a :

γ({x}) = Ψ(f)({x}) = f̃({x}) = f({x}) = {f(x)} 6= ∅

D’où l’absurdité, γ n’a pas d’antécédent par Ψ et par suite :

Ψ n’est pas surjective

5. (a) Vérifions successivement les 3 assertions, on a :
(i) On a ∀x ∈ E, f(x) ∈ F , ainsi E ⊂ f−1(F ), d’autre part, par définition, f−1(F ) ⊂ E.

Ainsi f−1(F ) = E ⇔ f∗(F ) = E.

(ii) Dans la suite, nous noterons X le complémentaire d’une partie X, il s’agira du complémentaire dans
E ou du complémentaire dans F selon que X ⊂ E ou X ⊂ F . Il faut démontrer que :
∀B ∈ P(F ), f−1(B) = f−1(B). On procède directement par équivalence :

x ∈ f−1(B)⇔ f(x) ∈ B ⇔ f(x) /∈ B ⇔ x /∈ f−1(B)⇔ x ∈ f−1(B)

D’où f∗(B) = f∗(B).
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(iii) On doit démontrer que f−1
(⋂

i∈I
Xi

)
=
⋂
i∈I

f−1(Xi). Là aussi, on procède par équivalence :

x ∈ f−1
(⋂

i∈I
Xi

)
⇔ f(x) ∈

⋂
i∈I

Xi ⇔ ∀i ∈ I, f(x) ∈ Xi ⇔ ∀i ∈ I, x ∈ f−1(Xi)⇔ x ∈
⋂
i∈I

f−1(Xi)

Ce qui démontre que f∗
(⋂

i∈I
Xi

)
=
⋂
i∈I

f∗(Xi).

On a vérifié les 3 assertions, donc :

f∗ vérifie la propriété (R)

(b) C’est une utilisation des assertions (ii) et (iii) en remarquant que
⋂
i∈I

Xi =
⋃
i∈I

Xi, justifions ceci :

x ∈
⋂
i∈I

Xi ⇔ x /∈
⋂
i∈I

Xi ⇔ ∃i ∈ I, x /∈ Xi ⇔ ∃i ∈ I, x ∈ Xi ⇔ x ∈
⋃
i∈I

Xi

On a alors en utilisant (ii) et (iii) :

ϕ
(⋃

i∈I
Xi

)
= ϕ

(⋂
i∈I

Xi

)
= ϕ

(⋂
i∈I

Xi

)
=
⋂
i∈I

ϕ(Xi) =
⋂
i∈I

ϕ(Xi) =
⋃
i∈I

ϕ(Xi)

D’où pour toute famille (Xi)i∈I de parties deF , on a :

ϕ
(⋃

i∈I
Xi

)
=
⋃
i∈I

ϕ(Xi)

(c) Vérifions les 3 conditions requises pour avoir une partition :
? Par définition pour tout y ∈ J, Ey 6= ∅. Les éléments de la famille (Ey)y∈J sont bien non vides.
? On a d’après la condition (i) de la propriété (R) et d’après la question 5.(b) :

E = ϕ(F ) = ϕ
( ⋃

y∈F
{y}
)

=
⋃
y∈F

ϕ({y}) =
⋃
y∈F

Ey =
⋃
y∈J

Ey

Ce qui montre que (Ey)y∈J est un recouvrement de E.
? Prenons y 6= y′ où (y, y′) ∈ J2 et prouvons que Ey ∩ Ey′ = ∅, ceci montrera que les éléments

de la famille sont bien disjoints. Remarquons que d’après les assertions (i) et (ii) de la condition (R),
ϕ(∅) = ϕ(F ) = E = ∅. On a :

∅ = ϕ(∅) = ϕ({y} ∩ {y′}) = ϕ({y}) ∩ ϕ({y′}) = Ey ∩ Ey′

On a montré que :
(Ey)y∈J est une partition de E

(d) On considère l’application :
f : E → F

x 7→ y tel que x ∈ Ey

L’application f est bien définie d’après la question précédente, en effet (Ey)y∈J est une partition de E donc
pour tout x ∈ E, il existe un unique y ∈ F tel que x ∈ Ey. Il s’agit de montrer que ∀B ∈ P(F ), ϕ(B) =
f−1(B). On a :
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x ∈ f−1(B)⇔ f(x) ∈ B ⇔ x ∈ Ey, avec y ∈ B ⇔ x ∈ ϕ({y}), avec y ∈ B ⇔ x ∈ ϕ(B)

On a démontré :
ϕ = f∗

6. ? L’application Θ est injective, en effet supposons que Θ(f) = Θ(g) avec f et g deux applications de E dans F
et montrons que f = g. Soit x ∈ E, notons y = f(x). On a :

y = f(x)⇔ x ∈ f−1({y})⇔ x ∈ f∗({y})⇔ x ∈ g∗({y})⇔ x ∈ g−1({y})⇔ y = g(x)

D’où f = g et par suite :
Θ est injective

? L’application Θ n’est pas surjective puisque si Θ(f) = ϕ alors ϕ doit vérifier la propriété (R) ce qui n’est
pas le cas de toutes les applications de P(F ) dans P(E) puisqu’il suffit d’imposer ϕ(F ) = ∅ pour contredire la
condition (i), étant donné que E est non vide.
Finalement :

Θ n’est pas surjective


