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Exercice 1 (1h30)

On fixe dans tout ce probléme A et B deux parties d’'un ensemble E. On rappelle que P(E) désigne ’ensemble des
parties de E et () désigne I'ensemble vide. Pour toute partie X de F, on pose f(X) = (X NA)U B. On définit ainsi

une application de P(F) dans P(E). Si X est une partie de F, on pourra noter X pour désigner le complémentaire
de X dans FE.

1. Soit X et Y deux parties de FE.

(a) Montrer que : X NY = X si et seulement si X C Y.
(b) Montrer que : X UY = X si et seulement si Y C X.

. Les questions suivantes présentent quelques exemples de calculs avec la fonction f.

(a) On suppose, pour cette question, que A = (), calculer f(X) pour tout X € P(E).
(b) On suppose, pour cette question, que B = FE, calculer f(X) pour tout X € P(FE).
(c) Dans le cas général, calculer f(0), f(A), f(B) et f(E).

. Montrer que f est croissante au sens de l'inclusion, c’est-a-dire que :

V(X,X")eP(E)? X cX' = f(X)cC f(X).

. Soit Y une partie de F.

(a) Montrer que si Y admet un antécédent par f alors : BCY C (AU B).
(b) Montrer que si BCY C (AU B) alors f(Y) =Y.
(c) En déduire que Y admet un antécédent par f si et seulement si f(Y) =Y.

5. Résoudre I’équation d’inconnue X une partie de E : f(X) = A.
6. Résoudre I'équation d’inconnue X une partie de E : f(X) = B.

7. Pour les questions qui suivent, on pensera a utiliser les résultats de la question 2.(c)

(a) Montrer que f est constante si et seulement si A C B.
(b) Montrer que f est surjective si et seulement si A = E et B = ().

(¢) Montrer que f est injective si et seulement si A = FE et B = {).

. Que dire de I'application fo f7?
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Corrigé : Avant tout, un petit dessin! Voici, en hachuré¢, f(X) dans le cas général :

Certaines démonstrations & venir sont beaucoup plus aisées & suivre & I’aide d’un dessin de ce type.

1. (a)

2. (a)

(b)

Démontrons cette équivalence par double implication. Soient X et Y deux parties de E.

(=) On supposons que X NY = X, démontrons que X C Y. Soit z € X, comme X = X NY, on a
x € XNY. Ce qui démontre en particulier que z € Y. D’'ou X C Y.

(<) Réciproquement, on suppose que X C Y, démontrons que XNY = X. Pour démontrer ceci, on procéde
par double inclusion :

e L’inclusion (X NY) C X est toujours vraie d’aprés le cours.
e Soit z € X, comme par hypothése X C Y, onaz € Y. Finalement z € X NY.D'ou X C (XNY).
On conclut par double inclusion que X NY = X.

Y(X,Y) e P(E)?, XNY = X si et seulement si X C Y

On pourrait tout a fait appliquer une méthode trés similaire a celle de la question précédente, mais il est
possible d’aller plus vite. Soient X et Y deux parties de E, on applique le résultat précédent & X et Y. On
a:

XNY = X si et seulement si X C Y

On passe au complémentaire dans cette relation :

XNy = ? si et seulement si ? - ?

Ce qui se simplifie en :
XUY = X siet seulement si Y C X

On a démontré que :

Y(X,Y) € P(E)?, XUY = X si et sculement si Y € X

Soit X € P(E),ona f(X)=(XNO)UB=0UB=B.

Si A=10, f estla fonction constante égale a B I

Soit X € P(E),ona f(X)=(XNA)UE =E.

Si B=FE, f estla fonction constante égale a EI
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(c) #Ona f(0)=(0NA)UB=B.
eOna f(A)=(ANA)UB=AUB.
e Ona f(B)=(BNA)UB = B d’aprés la question 1.(b) puisque BN A C B.
eOna f(E)=(ENA)UB=AUB.

f(0)=B, f(A)=AUB, f(B)=DBet f(E)=AUB

3. Soient X et X’ deux parties de E. On suppose que X C X' ce qui implique que (X N A) C (X' N A), d’'ou
[(XNA)UB]C[(XNA)UB]. On a démontré que :

V(X,X")eP(E)} X CcX' = f(X)cC f(X)

4. (a) On suppose que Y admet un antécédent par f, c’est-a-dire qu'il existe X € P(E) tel que f(X) =Y, d’ou
(XNA)UB=Y.
e Montrons que B C Y. Soit € B, on a en particulier x € (X NA)UB], donz €Y.
e Montrons que Y C (AUB).OnayY = (XNA)UB = (XUB)N (AU B), ce qui démontre bien que
Y Cc (AUB).

Si Y admet un antécédent par f alors BCY C (AU B)

(b) Soit Y une partie de E telle que B CY C (AU B), montrons que f(Y)=Y.On a:

fY)=(¥YNAUB=(YUBNAUB)=YN(AUB)=Y

car BCY

La derniére égalité étant vraie car Y C (AU B).

SiBCY C(AUB)alors f(Y)=Y

(¢) C’est une application des deux questions précédentes. Soit Y une partie de E, on suppose que Y admet un
antécédent par f, d’aprés la question 4.(a) cela implique que B C Y C AU B. Ainsi d’aprés la question
4.(b), on a f(Y) =Y. Réciproquement si f(Y) =Y, il est clair que Y a un antécédent, lui méme!

Y admet un antécédent par f si et seulement si f(Y) =Y

5. Raisonnons par analyse synthése.

e Analyse. On suppose avoir trouvé X une partie de E telle que f(X) = A. On a (XNA)UB = A, ceci implique
que B C A. A ce stade de I’étude, on sait que si B n’est pas inclus dans A alors I’équation n’a pas de solution.
On suppose pour continuer que B C A, l'égalité (X N A) U B = A implique que (A \ B) C X. Pour vous en
convaincre, il est trés utile de faire un dessin.

e Synthése. Toujours en supposant que B C A, considérons une partie X de E telle que (A\ B) C X. On a
(A\B) C XNAdonc AC (XNA)UB. Dautre part (X N A)U B C A puisque B C A. Les deux propositions
soulignés impliquent que f(X) = A. En résumé, si I'on note S 'ensemble des solutions de I’équation f(X) = A :

S=10 si B¢ A
{S {XeP(E), (A\B)Cc X} si BCA
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6.

7.

On raisonne encore par analyse-synthése.

e Analyse. On suppose qu'il existe X € P(FE) telle que f(X) = B, c’est-a-dire (X N A) U B = B. Ceci implique
que (XNA) C B, on peut aussi dire que X ne contient pas d’éléments de ANB. On en déduit que XN(ANB) = .
e Synthése. Réciproquement supposons que X N (AN B) = ) ot X est une partie de F alors (X N A) C B donc
(XN A)UB = B. Ce qui démontre que f(X) = B.

L’ensemble des parties X de E vérifiant f(X) = B est :

{XeP(E), XNn(ANB) =0}

(a) Pour démontrer cette équivalence, raisonnons par double implication.
(=) Supposons f constante, en particulier f(0)) = f(A), d’aprés la question 2.(c) cela implique que
B = AU B. Ce qui démontre d’aprés la question 1.(b) que A C B.
(<) Réciproquement supposons que A C B et donnons-nous X une partie de E. Ona (AN X) C A C B,
ce qui permet de dire que f(X) = (AN X)U B = B. La fonction f est constante égale a B.

f est constante si et seulement si A C B I

(b) Démontrons la aussi cette équivalence par double implication.

(=) On suppose f surjective ce qui signifie que toute partie Y de E posséde un antécédent par f. D’aprés
la question 4.(c) ceci implique que pour tout Y € P(FE), f(Y) =Y. En particulier f()) =0 et f(F)=F
mais d’apres la question 2.(c) f(0)) = B et f(E) = AU B. On obtient donc ) = Bet E = AU B.

(<) Réciproquement si A = E et B = () alors :

VX € P(E), fF(X)=(XNE)UD=X

Ceci démontre que tout élément a un antécédent, lui méme ; par suite f est bien surjective.

f est surjective si et seulement si A= F et B=10 I

(c) Pour démontrer cette équivalence, on procéde par double implication.
(=) On suppose que f est injective. D’aprés la question 2.(c) on a f(0) = f(B) et f(A) = f(E), ce qui
implique que ) = Bet A=FE.
(&) Réciproquement si B =0 et A= F, on a vu a la question précédente que VX € P(E), f(X) = X. La
fonction f est alors injective puisque c’est l'identité.

f est injective si et seulement si A= F et B=10 I

(d) Soit X € P(E). En utilisant les propriétés de distributivité classiques de N et U, on a :

fof(X) = [f(f(X))

KXmAN¢MmA)uB
- [(XmA)mA]u(BmA))UB
(XNA)U(BNAUB
(XNA)UB car (BNA)UB=B
= f(X)

fof=1Ff
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Plus généralement, vous pouvez démontrer que si g est une application d’un ensemble E dans lui méme telle que
gog=g alors :
g injective < g surjective < g est [identité

Une telle application est appelée idempotente.
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Exercice 2 (2h, difficile)

Soient E et F deux ensembles non vides. On note F¥ 1'ensemble des applications de E dans F, P(E) l'ensemble
des parties de E et P(F) 'ensemble des parties de F. A chaque application f : E — F, on associe les deux

applications :
f @ P(E) — PF) et f* : P(F) - P(E)
A = f(4) B~ [4(B)
Avec f(A) désignant 'image directe de la partie A par I'application f et f~1(B) désignant I'image réciproque de

la partie B par I'application f.

1. (a) Soit A € P(E) et B € P(F), rappeler les définitions et caractérisations de f(A) et f~1(B).
(b) Soient (A, A') € P(E)?, démontrer que f(AUA') = f(A)U f(A").
(¢) Soient (B, B') € P(F)?, démontrer que f*(BU B') = f*(B) U f*(B').

2. (a) Montrer que YB € P(F), on a fo f*(B) = BN f(E).
(b) Simplifier f*o fo f* et fo f*o f.

3. Démontrer les équivalences suivantes :
(a) f injective <= f injective.

(b

)
(c) f injective <= f* surjective.
(d)

4. Etudier I'injectivité et la surjectivité de I'application :

f surjective <= f surjective

[ surjective <= f* injective.

v FPo— p(R)PP)
foe f

5. Soit ¢ : P(F) — P(E), on dit que ¢ a la propriété (R) si et seulement si ¢ vérifie les 3 assertions suivantes :

(1)  (F)=FE
(i) VX eP(F), o(F\ X) = E\ ¢p(X)

(7it) Pour toute famille (X;);er de parties de F, go( ﬂ Xi> = ﬂ o(X
iel iel

(a) Démontrer que pour toute application f : E — F', lapplication f* a la propriété (R).

On considére dans les questions (b), (c) et (d) une application ¢ ayant la propriété (R). On pose, pour

tout y € F, Ey = p({y}).
(b) Montrer que pour toute famille (X;);c; de parties de F, on a cp( U Xz-) = U p(X

iel el

(c) On définit J = {y € F, E, # 0}. Montrer que la famille (Ey)ycs est une partition de E.
(d) Expliciter une application f : E — F telle que ¢ = f*.

6. Etudier I'injectivité et la surjectivité de I'application :
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Corrigé : On a vu dans le cours les deuzr notions d’images directes et réciproques, ce probléme propose une étude
détaillée de ces concepts.

1. (a) D’apreés le cours : f(A) = {f(x), x € A}. La caractérisation explicite étant :

ye f(A)edre A y=f(x)

D’autre part : f~1(B) = {x € E, f(x) € B}, c’est-a-dire que :

refi(B)e f(z)eB

(b) Cela revient simplement a démontrer que f(A U A’) = f(A) U f(A'), puisque VA € P(E), f(A) = f(A).
On procéde par double inclusion :
* Soit y € f(AU A, il existe v € AU A’ tel que f(z) = y. Il y a deux cas & distinguer :
esiz € Aalorsy = f(z) € f(A). Ce qui démontre que y € f(A) U f(A").
esiz e A alors y = f(z) € f(4"). Ce qui démontre que y € f(A) U f(A").
Ce qui démontre f(AUA") C f(A)U f(A").

* Soit y € f(A)U f(A), il y a deux cas & distinguer :
e Siy € f(A) alors il existe x € A tel que y = f(z). En particulier x € AU A" d’ott
y=f(z) € f(AUA).
e Siye f(A) alors il existe z € A" tel que y = f(z). En particulier x € AU A" d’ot
y = flx) € f(AU A,
Ce qui démontre que f(A) U f(A") C f(AU A)).
Par double inclusion, on a :

J(AUA) = J(A) U J(A)

(¢) Cela revient simplement & démontrer que f~*(BUB') = f~1(B) U f~}(B'), puisque
VB € P(F), f*(B) = f~YB). On procéde aussi par double inclusion :
x Soit z € fTY(BUB'), ona f(r) e BUB, ily a deux cas a distinguer :
¢ Si f(z) € Balors z € f7}(B). On a bien z € f~YB)U f~1(B).
e Si f(x) € B' alors x € f~'(B’). On a bien z € f~1(B)U f~1(B).
Ce qui démontre f~H(BUB') C f~Y(B)uU f}(B').
* Soit z € fY(B)U f~1(B), il y a deux cas a distinguer :
e Siz € f71(B), alors f(x) € B donc en particulier f(x) € BUB’. Clest-a-dire que z € f~{(BUB').
eSiz e f~Y(B), alors f(x) € B’ donc en particulier f(z) € BUB'. C’est-a-dire que z € f~}(BUB').
Ce qui démontre f~H(B)U f~4(B') c f~Y(BUB).
Par double inclusion, on a :

f(BUB') = f"(B)U f*(B')

2. (a) L’égalité énoncée se traduit par f(f~*(B)) = BN f(E) que nous allons démontrer par double inclusion.
* Soit y € f(fH(B)), il existe z € f~1(B) tel que y = f(z). Or x € f~1(B) donc y = f(z) € B. Ce qui
démontre que f(f~1(B)) C B. D’autre part, par définition, f~1(B) C E donc f(f~1(B)) C f(E).

On a démontré que f(f~1(B)) € BN f(E).




MPSI2

Archives DS3

x Soit y € BN f(E), il existe z € F tel que y = f(z). Comme y € B, on a = € f '(B) et par suite
y € f(f~YB)). Ce qui démontre que BN f(E) C f(f~Y(B)).
Finalement, on a pour tout B € P(F) :

fo[*(B)=Bn f(E)

(b) D’aprés la question précédente, pour tout B € P(F), on a :

frofof (B)=f(BNf(E)=f BNfE)=fB)Nf(fE)=Ff"(BNE=f"(B)=[(B)

On vient de démontrer que :

En utilisant également la question précédente, pour tout A € P(FE), on a :

foftof(A)=Ffof (f(A)=fA)Nf(E)=f(A)= f(4)

On a utilisé que f(A) C f(E) puisque A C E. On vient de démontrer que :

foftof=f

3. Pour les questions a venir, on utilise un raisonnement par double implication.

(a)

(=) Soit f injective, démontrons que f est injective. Soient (A, A’) € P(E)?, on suppose que f(A) = f(A'),
c’est-a-dire que f(A) = f(A4’), le but est de montrer que A = A’. Pour cela, prenons z € A, par définition
f(z) € f(A) donc f(z) € f(A), cest-a-dire qu'’il existe 2’ € A’ tel que f(z') = f(x). Or f est injective, cela
implique que x = 2’ et par suite z € A’. On vient de démontrer que A C A’. En procédant de la méme facon,
le probléme étant symétrique en A et A’ on obtient A’ C A. D’oit A = A’, ce qui démontre l'injectivité de
f.

(<) Soit f injective, démontrons que f est injective. Soit (z,2") € E?, on suppose que f(z) = f(z'); le
but est de démontrer que z = z’. On a f({z}) = f({2'}) puisque les deux sont égaux a {f(z)}, ce qui se
traduit par f({z}) = f({z'}). Grace a linjectivité de f, on en déduit que {x} = {z'} et par suite on a
x = 2'. Ce qui démontre 'injectivité de f.

f injective < f injective'

(=) Soit f surjective, montrons que f est surjective. Soit B € P(F), trouvons-lui un antécédent par f.
Comme f est surjective, on a f(E) = F' donc, d’aprés la question 2.(a), il vient : fo f*(B) = BNF = B.
Ainsi un antécédent de B par f est f*(B), on vient de montrer que f est surjective.

Par double implication, on a :

(<) Soit f surjective, montrons que f est surjective. Soit y € F' trouvons-lui un antécédent par f. On sait
que {y} étant un sous-ensemble de F, il posséde un antécédent par f, c’est-a-dire qu'il existe A € P(E) tel
que f(A) = f(A) = {y}. La partie A ne peut étre vide, ainsi prenons z € A, on a bien f(z) = y. Finalement

f est surjective.
f surjective < f surjective'

Par double inplication, on a :
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D’aprés 3.(a), on a f injective < f injective, ainsi nous allons démontrer f injective < f* surjective pour
avoir I’équivalence souhaitée. Par double implication :

(=) Soit f injective, montrons que f* est surjective. Pour cela prenons A € P(E) et trouvons-lui un
antécédent par f*. D’aprés la question 2.(b), on a f o f* o f(A) = f(A), or f est injective, cette relation
implique que f*o f(A) = A. On a ainsi f(A) qui est un antécédent de A par f*, d’ou la surjectivité de f*.
(=) Soit f* surjective, montrons que f est injective. Prenons (A, A') € P(E)? et supposons que f(A) =

f(A"), f* étant surjective, A et A’ possédent un antécédent par f* que I'on note respectivement B et B’,
on a:

F(A) = J(A) & J(F(B) = F(I*(B) = [(J(f*(B)) = [ (F(*(B)) & [ (B) = [*(B) & A= A

Ceci en utilisant également la simplification obtenue a la question 2.(b) : f*o fof*=f* Cequidémontre

I'injectivité de f. Finalement, on a :
f injective & f* surjective'

Par la méme remarque qu’a la question précédente, il suffit de démontrer que f surjective < f* injective
d’aprés 3.(b). Clest exactement la méme fagon de faire qu’a la question précédente, puisque les seules
formules utilisées sont celles de la question 2.(b) et elles sont symétriques en f et f*. On a ainsi :

[ surjective & f* injective'

4. L’application ¥ est injective, en effet supposons que V(f) = ¥(g) avec f et g deux applications de E dans F.
Ona:

U(f)=U(9) & [=g& VAcP(E), f(4)=3(4) & YAcP(E), f(4)=g(4)

En particulier avec A = {z} on x € E, on a f({z}) = g({z}), dou f(x) = g(x) et par suite f = g. On a
démontré que :

U est injective.

Par contre ¥ n’est pas surjective, en effet considérons I’application v de P(E) dans P(F') définie par VA € P(E),
v(A) = (. Cette application n’a pas d’antécédent par W, par 'absurde si ¥(f) = ~, alors prenons = € F qui
existe puisque F est non vide. On a :

v({z}) = ()} = f{z}) = f({z}) = {f(2)} # 0

D’ou ’absurdité, v n’a pas d’antécédent par ¥ et par suite :

5.

U n’est pas surjective'

(a) Veérifions successivement les 3 assertions, on a :

(i) On aVz € E, f(x) € F, ainsi E C f~Y(F), d’autre part, par définition, f~1(F) C E.
Ainsi f"Y(F)=E & f*(F)=E.

(ii) Dans la suite, nous noterons X le complémentaire d’une partie X, il s’agira du complémentaire dans
FE ou du complémentaire dans F selon que X C E ou X C F'. Il faut démontrer que :

VB € P(F), f~Y(B) = f~1(B). On procéde directement par équivalence :

z€f(B)e fla)eBe flx)¢ Boad fTH(B) e ae f1(B)

Dot f*(B) = F(B).
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(iii) On doit démontrer que f~! < ﬂ Xi) = ﬂ f~1(X;). La aussi, on procéde par équivalence :
el el

ze f‘1<ﬂXi) sfle)e(XieViel, f@eXieVicl, ve f ' (X)exe()f(X)
iel iel iel

Ce qui démontre que f* ( ﬂ XZ-) = ﬂ FH(X5).
icl icl
On a vérifié les 3 assertions, donc :

[ verifie la propriété (R)

C’est une utilisation des assertions (i7) et (i7i) en remarquant que ﬂ X; = UZ, justifions ceci :
i€l el
re(NXier¢(\Xiewdicl, ¢ Xiedicl, zeXereJX;
iel iel el
On a alors en utilisant (i) et (ii7) :

SO(UX'L') = @(ﬁ) Zw(ﬂfi) =X =X = e(X)

el 1€l 1€l i€l 1€l i€l

D’ou pour toute famille (X;);er de parties deF', on a :

<P< U Xz‘) = Je(xs)

el iel

Vérifions les 3 conditions requises pour avoir une partition :
* Par définition pour tout y € J, E, # ). Les éléments de la famille (E,),c.; sont bien non vides.
* On a d’apres la condition (i) de la propriété (R) et d’apres la question 5.(b) :

B=e)=¢(Uw) = Uwttn=U5=U"

yeF yeF yeF yeJ

Ce qui montre que (Ey)ye J est un recouvrement de E.
% Prenons y # 3y ou (y,y') € J? et prouvons que E, N E, = 0, ceci montrera que les éléments

de la famille sont bien disjoints. Remarquons que d’aprés les assertions (i) et (i) de la condition (R),
o) =p(F)=E=0.0na:

D=0 =e{y}N{y}) =e{y}) Ne({y'}) = E,NEy

On a montré que :

(Ey)yes est une partition de E

On consideére ’application :
f: E > F
r = y telquex ek,
L’application f est bien définie d’aprés la question précédente, en effet (E,),cs est une partition de £ donc

pour tout x € E, il existe un unique y € F' tel que x € E,. Il s’agit de montrer que VB € P(F), p(B) =
fY(B).Ona:
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ref ' (B)e f(r)e BexcE, avecy € B x € o({y}), avecy € B < = € ¢(B)

On a démontré :

o=f"

6. * L’application O est injective, en effet supposons que O(f) = O(g) avec f et g deux applications de E dans F
et montrons que f = g. Soit z € E, notons y = f(x). On a :

y=flr)ezef{yheref {y) eregd{y) e ({y) & y=y()

O est injective.

* L’application © n’est pas surjective puisque si O(f) = ¢ alors ¢ doit vérifier la propriété (R) ce qui n’est
pas le cas de toutes les applications de P(F) dans P(F) puisqu’il suffit d’imposer ¢(F) = () pour contredire la
condition (), étant donné que F est non vide.

O n’est pas surjective I

D’ou f = g et par suite :

Finalement :




