MPSI2 DM11 Mathématiques corrigé
Des anneaux et des oiseaux
1. (a) L’existence de D'écriture est garantie par la définition de Z[v/2] . Tl reste & démontrer 1'unicité, pour cela

supposons que x € Z[v/2] ait deux écritures : z = a + bvV/2 = ¢+ dv/2 on (a, b, ¢, d) € Z*. Par soustraction,

cela implique que (a —¢) + (b — d)v2 =0, il y a deux cas & considérer :
» Si b=d, on obtient immédiatement a = c.

»Sib#d, onaVv2= %. Ceci est absurde car V/2 est irrationnel.

On est toujours dans le premier cas et ’écriture est unique.

Vo € Z[V2], I(a,b) € Z%, x =a+bV2

Nous allons démontrer que Z[v2] est un sous-anneau de anneau (R, +, x).
» Déja Z[v2] C R par définition.
» Montrons que (Z[v/2], +) est un sous-groupe de (R, +) :

e 0=0+0v2eZ[V?2|

e Soient (z,y) € Z[V2]> avec 2 = a +bV2 et y = ¢ +dV2 ot (a,b,¢,d) € Z*. On a :

t+y=(a+tc)+Ob0+dV2€ZV2caratcecZetbt+decZ
e Soit = € Z[V?2] avec x = a + bv/2 ot (a,b) € Z>. On a :
—r=—-a—-bV2€Z[V2| car —a€Zet —bEZ

> 1=1+0vV2cZ[V2.
» Soient (z,7) € Z[V?2]? avec z = a + bv2 et y = ¢+ dv/2 ot (a,b,¢,d) € Z*. On a :

2y = (ac+ 2bd) + (ad + be)vV/2 € Z[\V?2] car ac + 2bd € Z et ad + be € Z

Z[V/2] est un sous-anneau de R

L’anneau Z[\/ﬁ] est commutatif et inteégre car c’est un sous-anneau de R qui est commutatif et integre.

Vérifions les trois propriétés requises pour avoir un morphisme d’anneaux. Dans cette question, on se donne

deux éléments de Z[v/2] que I'on note = a + bv'2 et y = ¢ + dv/2 avec (a,b, ¢, d) € Z*.
» On a:

olx+y)=p(la+c)+O+dV2) =(a+c)— (b+d)V2=(a—bV2)+ (c —dV2) = o(x) + ¢(y)

» D’autre part :

o(xy) = p((ac+ 2bd) + (ad + be)V'2) = (ac + 2bd) — (ad + be)V2 = (a — bV2)(c — dV2) = (x)e(y)

» Enfin, il est clair que (1) = 1.
L’application ¢ est bijective car p oy = idZ[ Nk

¢ est un automorphisme de Z[v/2]
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(d) Soient (z,y) € Z[V2]? avec z = a +bV2 et y = ¢+ dv2 on (a,b,¢,d) € Z*. On a :
N(zy) = N((ac+ 2bd) + (ad + be)V2) = (ac + 2bd)? — 2(ad + be)? = (ac)? + 4(bd)? — 2(ad)? — 2(bc)?

D’autre part :
N(z)N(y) = (a® — 2b*)(® — 2d%) = (ac)? — 2(ad)? — 2(bc)? + 4(bd)?

Ce qui démontre le résultat voulu.

N est multiplicative.

(e) Démontrons le résultat par double implication, on a :
(=) Soit z € Z[V2]*, il existe y € Z[V2] tel que zy = 1. En prenant la norme, il vient
N(zy) = N(1) = 1, c’est-a-dire N(z)N(y) = 1. Or, par définition, N(x) et N(y) sont des entiers relatifs,
on a nécessairement N (z) = £1.
(<) Réciproquement soit 2 € Z[v2] avec = a + bv'2 ott (a,b) € Z* tel que N(x) = £1. On pose
y=(a—bV2)N(z), on a:

zy = (a4 bv2)(a — bV2)N(z) = (a® — 20*)N(z) = N(z)?> = 1

Ainsi # est un élément inversible de Z[v/2] et 'on a méme trouvé Pexpression de son inverse.

On vient de démontrer le critere qui va nous servir dans toute la suite de I'exercice :

x € Z[V2]* & N(z) = £1

(f) Par une récurrence immédiate, on démontre que pour tout entier naturel n, N(z") = N(x)" en utilisant
la propriété de multiplicativité de N. Ainsi pour tout entier naturel n, on a :

N(£(1£v2)") = N(£1)NQ1 £V2)" =1 x (=1)" = (=1)"

D’apres le critere démontré a la question précédente, cela suffit pour affirmer que :

vn €N, £(1+v2)" € Z[V2]*

2. (a) Les quatre éléments en question ont la méme norme : a® — 2b%. Si I'un d’entre eux est inversible sa norme
vaut +1 et par suite la norme des trois autres éléments vaut également +1 d’ou leur inversibilité.

(b) i Sia =0 alors N(z) = —2b% ne peut étre égal & +1 et par suite z ne peut pas étre inversible. Ce qui
est contraire a ’hypothese de départ.

Si a+bv2 € Z[V2]* alors a # 0

ii. Sib=0,ona N(z)= a®? = +1 puisque z est supposé inversible. Ainsi a = 1 puisque le cas a = —1 est
a exclure comme 1’on a supposé que a € N.

Sib:()alors:rzli
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iii.

v.

On suppose b # 0, comme z est inversible on a N(x) = a? — 2% = +1. D’une part :
a? < 2b% +1 < 2b% + 2b% = 4b? en utilisant 1 < 2b2 puisque b est un entier strictement positif

Par croissance de la fonction racine carrée, étant donné que a et b sont positifs, 'inégalité précédente
implique a < 2b.
D’autre part :

a? — 2% = +1 > —1 ce qui implique que 2b* < a? +1 < 2a? car 1 < a?

Sib;é()alorsbga<2bl

r (1 —+/?2) _
1Hv2 (V21— v2)

X

1++2

Ce qui démontre que b < a

On a:

(1=v2)=(2b—a)+ (a—b)V2

= (2b—a) + (a — b)V2

. Pour r € N*, on considere ’hypothese de récurrence :

H, : siz=a+bV2 e Z[V2]* avec (a,b) € N? et a+b =7 alors il existe n € N tel que z = (1+v/2)"

» Sir =a+b=1 alors comme (a,b) € N? et a # 0 d’aprés la question 2.(b)i., on a nécessairement
a=1etb=0.Dans ce cas, on a 1 +0V2 = (1+ \/i)o ce qui montre que n = 0 convient.

» Soit » € N*, on procede par récurrence forte en supposant que Hj, est vraie pour tout k € [1,7]. Il
s'agit de démontrer que H,,1 est vraie. Soit x = a + bv'2 € Z[V2]* avec (a,b) € N? et a +b=r + 1.
Si b =0 alors x = 1 d’apres la question 2.(b)ii. et I'on peut choisir n = 0. Si b # 0, on considere :

rﬂ:(2b-a)+(a—b)\/iza’+b’x/§

T

1++v2
b = a — b sont des entiers positifs d’apres la question 2.(b)iii. et ' +0' =b < a+b=r+ 1. Ce qui
permet d’appliquer Phypothése de récurrence a o’ +b'v/2, il existe n € N tel que @’ +b'vV2 = (1+ \@)”
et par suite x = (1 + \/5)”+1. Ce qui démontre que H,1 est vraie et achéve la récurrence.

On a qui appartient a Z[\/i]X comme quotient d’éléments inversibles. De plus @’ = 2b — a et

Six=a+bv2 e Z[V2]* avec (a,b) € N? alors il existe n € N tel que z = (1 +V2)"

(¢) Soit & = a+ bv2 € Z[V2]* avec (a,b) € Z*. 1l y a 4 cas & considérer :
» Sia>0etb>0 alors d’apres la question précédente, il existe n € N tel que a + bv/2 = (1+ \/5)”
> Sia <0etb<0 alors d’apres la question précédente, il existe n € N tel que —a — bv/2 = (1+ \/i)"
d'ott a+bvV2 = —(1+V2)"

» Sia>0etb<0 alors d’apres la question précédente, il existe n € N tel que a — bv/2 = (14 v/2)", on
applique ¢ a cette égalité et on utilise la propriété de morphisme de ¢ :

pla—bv2) = p((1+V2)") = p(1+ V)" & a+ b2 = (1- V)"
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» Enfinsia < 0et b >0, on a d’apres 'alinéa précédent, Pexistence de n € N tel que —a—bv/2 = (1— \/5)"
dott a+b0vV2 = —(1 - V2)"

Dans les quatre cas, on a :
IneN, z==2(1+£V2)"
En résumé, cette question ainsi que la question 1.(f) permettent d’aboutir a la caractérisation des inversibles
de anneau Z[v?2] :
r€ZV2)* & 3IneN, z==+(1+V2)"
3. (a) Les oiseaux volent en formation triangulaire, c’est-a-dire qu’il existe [ € N tel que :

I(1+1
N:1+2+3+...+l:(—;)

N
D’autre part 5 est également un entier qui peut s’écrire sous la forme 1424 3+ ... +m puisque les deux

N
groupes de 5 oiseaux volent également en formation triangulaire.

I(1+1)

3(1,m) e N>, N = :

=m(m+1)
Utilisons I’équivalence démontrée & la question 1.(e) en vérifiant que N(a + bv/2) = +1. On a :
N(a+bV2) = a®—2b”
= (204 1) —2(2m + 1)
= AP +4+1-8m* —8m —2

B 8<l(l+ 1)

5 —m(m+1))—1

= -1

Sia=2l+1etb=2m+1 alors a + bv/2 est inversible I

Comme a et b sont positifs, on est dans le cadre de la question 2.(b), ainsi :

IneN, a+bvV2=(1+V2)"

Sin:O,ona(1+\/§)0:1:1+0X\/§ainsia0:1etb0:0. Soit n € N, on a :
Qi1+ b1 V2 = (L4 V2" = (14 V2) (1 +V2)" = (1 + V2)(an + baV2) = (an +2bn) + (an + bn)V2

Ce qui démontre que ap+1 = an + 2b, et by11 = an + by, cette identification étant valable puisque tout
élément de Z[v/2] s’écrit de facon unique sous la forme a + bv/2.

ap=1, bg =0
Vn €N, apt1 = an + 2b,
VneN, byy1 =an + by
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(e) Les formules précédentes permettent de calculer de proche en proche les coefficients du développement de
(1+ v2)"™. Une fois que I'on connait ces coefficients, on trouve a = a,, puisque a + bv'2 = (14 v/2)" et on

en déduit [ car [ = L_l. Si 'on connait I, on trouve le nombre d’oiseaux N puisque N = @
nilan,| by | a|l N
017010 0
111710 0
2 21311 1
31715 7/|3 6
4 |17 12|17 8 | 36
5141129 (41|20 210
6199 |70]99 |49 | 1225

Le seul résultat étant compris entre 100 et 1000 est N = 210.
On remarque d’ailleurs que si n est pair alors by, est pair ce qui ne peut pas convenir a notre probleme ou

b est impair.
Ce jour-la il y avait 210 vanneaux huppés I

(f) C’est bien sur 42 (qui n’est pas ma pointure de chaussures).

Un autre probléme assez similaire est celui de la pile d’oranges. On considére une pyramide & base carrée
d’oranges, c¢’est-a-dire qu’il y n® oranges a la base (un carré de n par n), (n — 1)2 oranges au dessus ainsi
de suite jusqu’a l'orange qui se trouve au sommet. Le nombre, N, d’oranges est de la forme :

N =1+2+..+(n—1)?+n* pour un certain n € N

La pile s’effrondre et l’on remarque que l’on peut réorganiser les oranges en un carré parfait. C’est-a-dire
que N =1? ot l € N. Hormis N = 1, la seule solution est N = 4900.



