L'usage de la calculatrice est interdit. Les raisonnements présentés devront être soigneusement justifiés et détaillés, quelques points seront dédiés à la présentation, l'orthographe et la propreté de votre copie. En particulier, il vous est demandé de souligner les résultats obtenus. Il n'est pas nécessaire de répondre à l'ensemble des questions pour avoir une bonne note.

Exercice 1

Les questions suivantes sont indépendantes.

- 1. Résoudre l'inéquation d'inconnue x réel : $x-1 < \sqrt{x+2}$.
- 2. Déterminer les limites suivantes :

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

(b)
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x}$$
.

(c)
$$\lim_{x\to 0} \frac{\sin(5x)}{x}$$
.

- 3. Donner l'ensemble de définition, l'ensemble de dérivabilité et la dérivée de $f: x \mapsto \ln\left(\frac{e^x + e^{-x}}{e^x e^{-x}}\right)$. On simplifiera au maximum l'écriture de la dérivée.
- 4. Pour x et y deux réels, on considère la proposition :

$$(P) : (x \neq -1 \text{ et } y \neq -1) \Rightarrow x + y + xy \neq -1$$

- (a) Écrire la négation de (P).
- (b) Écrire la contraposée de (P).
- (c) Démontrer que la propriété (P) est vraie.
- (d) L'équivalence est-elle vraie?
- 5. (a) Soit $a \in \mathbb{R}$. Factoriser $a^5 2^5$ par a 2.

(b) Soit
$$n \in \mathbb{N}^*$$
, calculer $\sum_{k=1}^{n} (2k + 3k^2)$.

(c) Soit
$$n \in \mathbb{N}^*$$
, calculer $P_n = \prod_{k=2}^{n+1} 3e^{2^k}$.

6. Soient P, Q et R trois propositions, démontrer que (P ou $Q) \Rightarrow R$ est équivalente à $(P \Rightarrow R)$ et $(Q \Rightarrow R)$. On pourra utiliser une table de vérité.

Exercice 2

Soit $n \in \mathbb{N}^*$. Dans tout le problème, on considère les fonctions :

$$f_n:]-1, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto x^n \ln(1+x)$

1. Étude des fonctions f_n . Soit $n \in \mathbb{N}^*$, on note h_n la fonction définie sur $]-1,+\infty[$ par :

$$h_n(x) = n\ln(1+x) + \frac{x}{1+x}$$

- (a) Étudier le sens de variation des fonctions h_n .
- (b) Calculer $h_n(0)$ et en déduire le signe de h_n .
- (c) Étude du cas particulier où n = 1.
 - i. Justifier que f_1 est dérivable sur $]-1,+\infty[$ et exprimer $f_1'(x)$ en fonction de $h_1(x)$.
 - ii. En déduire les variations de la fonction f_1 sur $]-1,+\infty[$.
- (d) Soit $n \in \mathbb{N}^* \setminus \{1\}$.
 - i. Justifier la dérivabilité de f_n sur $]-1,+\infty[$ et exprimer $f'_n(x)$ en fonction de $h_n(x)$.
 - ii. En déduire les variations de f_n sur $]-1,+\infty[$, on pourra distinguer les cas n pair et n impair. On précisera les limites aux bornes de l'ensemble de définition en étudiant d'éventuelles asymptotes.
- 2. Étude d'une suite. On considère la suite $(U_n)_{n\in\mathbb{N}^*}$ définie par : $U_n = \int_0^1 f_n(x) dx$.
 - (a) Calcul de U_1 .
 - i. Prouver l'existence de trois réels a, b et c tels que : $\forall x \in [0, 1], \frac{x^2}{x+1} = ax + b + \frac{c}{x+1}$.
 - ii. En déduire la valeur de l'intégrale : $\int_0^1 \frac{x^2}{x+1} dx$.
 - iii. En déduire la valeur de U_1 .
 - (b) Convergence de la suite $(U_n)_{n\in\mathbb{N}^*}$.
 - i. Démontrer que la suite $(U_n)_{n\in\mathbb{N}^*}$ est monotone.
 - ii. Démontrer que : $\forall n \in \mathbb{N}^*, \ 0 \le U_n \le \frac{\ln(2)}{n+1}$.
 - iii. En déduire la limite de la suite $(U_n)_{n\in\mathbb{N}^*}$.
 - (c) Calcul de U_n pour $n \ge 2$. Pour $x \in [0,1]$ et $n \in \mathbb{N}^* \setminus \{1\}$, on pose :

$$S_n(x) = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n = \sum_{k=0}^n (-1)^k x^k$$

- i. Montrer que $S_n(x) = \frac{1}{1+x} + \frac{(-1)^n x^{n+1}}{1+x}$.
- ii. En déduire que : $\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \ln(2) + (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} dx.$
- iii. En déduire que :

$$U_n = \frac{\ln(2)}{n+1} + \frac{(-1)^n}{n+1} \left(\ln(2) - \sum_{k=0}^n \frac{(-1)^k}{k+1} \right)$$

Problème: Puissances descendantes

Soit $x \in \mathbb{R}$ et $m \in \mathbb{N}$. Dans tout le problème, on note :

$$x_{[m]} = \prod_{i=0}^{m-1} (x-i)$$

Ce nombre réel est appelé x à la puissance descendante m.

A-Premières propriétés

- 1. Pour $x \in \mathbb{R}$, expliciter $x_{[0]}, x_{[1]}, x_{[2]}$ et $x_{[3]}$.
- 2. Soit $(k, m) \in \mathbb{N}^2$.
 - (a) Montrer que si m > k alors $k_{[m]} = 0$.
 - (b) Montrer que : $\binom{k}{m} = \frac{k_{[m]}}{m!}$.
 - (c) Exprimer $(-1)_{[m]}$ en fonction de m!.
- 3. Soit $m \in \mathbb{N}$ et $x \in \mathbb{R}$.
 - (a) Montrer que : $x_{[m+1]} = x \times (x-1)_{[m]} = x_{[m]} \times (x-m)$.
 - (b) En déduire que : $(x+1)_{[m+1]} x_{[m+1]} = (m+1)x_{[m]}$.
 - (c) En déduire que :

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} k_{[m]} = \frac{(n+1)_{[m+1]}}{m+1} \quad (\bigstar)$$

- 4. Les deux questions suivantes sont à faire en utilisant notamment la formule (\bigstar) .
 - (a) Soit $n \in \mathbb{N}$. Retrouver l'expression de $\sum_{k=0}^{n} k^m$ pour m=1 et m=2.
 - (b) Soient $(n, p) \in \mathbb{N}^2$ avec $p \leq n$. Simplifier $\sum_{k=p}^{n} \binom{k}{p}$.

On donnera le résultat sous la forme d'un coefficient binomial.

B-Puissances descendantes négatives

Pour $x \in \mathbb{R}$ et $m \in \mathbb{N}^*$, on définit les puissances descendantes négatives, lorsque cela est possible :

$$x_{[-m]} = \frac{1}{\prod_{i=1}^{m} (x+i)}$$

- 1. (a) Pour quelles valeurs de $x \in \mathbb{R}$ peut-on définir $x_{[-3]}$?
 - (b) Plus généralement, pour quelles valeurs de $x \in \mathbb{R}$ l'expression $x_{[-m]}$ a t-elle a un sens lorsque $m \in \mathbb{N}^*$?
- 2. En précisant les valeurs de x pour lesquelles la formule a un sens, démontrer que :

$$\forall m \in \mathbb{Z}, \ (x+1)_{[m+1]} - x_{[m+1]} = (m+1)x_{[m]}$$

- 3. Soient $(n,m) \in \mathbb{N}^2$ avec $m \ge 2$. On pose $S_{n,m} = \sum_{k=0}^n k_{[-m]}$.
 - (a) Montrer que $S_{n,m} = \frac{1}{m-1} \left(\frac{1}{(m-1)!} \frac{(n+1)!}{(n+m)!} \right)$.
 - (b) En déduire $\lim_{n\to+\infty} S_{n,m}$.

- 4. Soient $(n, m) \in \mathbb{N}^2$ avec $2 \le m \le n$.
 - (a) Montrer que : $\sum_{k=m}^{n} \frac{1}{\binom{k}{m}} = m! \sum_{k=0}^{n-m} k_{[-m]}$.
 - (b) En déduire que : $\lim_{n \to +\infty} \sum_{k=m}^{n} \frac{1}{\binom{k}{m}} = \frac{m}{m-1}$.

C-Une autre formule du binôme

- 1. Soient $(x,y) \in \mathbb{R}^2$ et $m \in \mathbb{N}$.
 - (a) Soit $k \in [0, m]$. Montrer que : $x_{[k]}y_{[m-k]}(x+y-m) = x_{[k+1]}y_{[m-k]} + x_{[k]}y_{[m+1-k]}$.
 - (b) Montrer par récurrence sur $m \in \mathbb{N}$ l'égalité suivante :

$$(x+y)_{[m]} = \sum_{k=0}^{m} {m \choose k} x_{[k]} y_{[m-k]}$$

- 2. Pour $x \in \mathbb{R}$ et $m \in \mathbb{N}$, on pose $\binom{x}{m} = \frac{x_{[m]}}{m!}$.
 - (a) Montrer que lorsque $x \in \mathbb{N}$, on retrouve les coefficients binomiaux classiques.
 - (b) Montrer que pour tout $x \in \mathbb{R}$ et pour tout $m \in \mathbb{N}$: $\binom{x}{0} = 1$ et $\binom{-1}{m} = (-1)^m$.
 - (c) Montrer que pour tout $x \in \mathbb{R}$ et pour tout $m \in \mathbb{N}$: $\binom{x}{m} + \binom{x}{m+1} = \binom{x+1}{m+1}$.
- 3. Démontrer la formule de Chu-Vandermonde :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall m \in \mathbb{N}, \ \sum_{k=0}^m \binom{x}{k} \binom{y}{m-k} = \binom{x+y}{m}$$

D-Application de la formule de Chu-Vandermonde

1. Montrer que :

$$\forall x \in \mathbb{R}, \ \forall m \in \mathbb{N}, \ \sum_{k=0}^{m} (-1)^k \binom{x}{k} = (-1)^m \binom{x-1}{m}$$

- 2. (a) Soit $k \in \mathbb{N}$. Montrer que : $\binom{2k}{k} = (-4)^k \binom{-\frac{1}{2}}{k}$.
 - (b) En déduire que :

$$\forall m \in \mathbb{N}, \ \sum_{k=0}^{m} {2k \choose k} {2(m-k) \choose m-k} = 4^m$$