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Exercice 1

Les questions 1. et 2. constituent le théoréme de Cesaro, c’est un grand classique en classes préparatoires.
€

1. (a) Soit € € RY, comme la suite (u,) tend vers 0, il existe ng € N* tel que pour tout n > ng, |u,| < 5

Ainsi pour n > ng, en utilisant 'inégalité triangulaire, on a :
1 1 " n-— ng+1 ¢ €
— up| < — ug| = — —=——x-<=
n Z k’ n Z [k n 2 n 272

La derniere inégalité étant justifiée par le fait que ———— < 1 puisque n > ng > 1.
n

no—1
(b) L’entier ng étant fixé dans la question précédente, I’expression Z u), est constante, notons-la A. La suite
k=1

A o A £ o
(—) tend vers 0, ainsi, il existe n; € N* tel que pour tout n > np : ‘—‘ < 3 Ce qui démontre
n/n>1 n

exactement que :

Inq € N*, Vn > nq,

SRS
IR

(c) Il s’agit de faire le bilan des deux questions précédentes, si 'on prend N = max(ng,n1), on a pour n > N :
1 n 1 no—1 n 1 no—1 1 n c c
ond = | =[5 (S et Y| <[ Y] + | Y| s 5+ 5=
k=1 k=1 k=ng k=1 k=ng

Ceci en utilisant I'inégalité triangulaire et les résultats des deux questions précédentes.

On a démontré que :
Ve>0, INeN, Vn > N, |v,]| <e

(vp,) tend vers 0

2. Soit (uy) une suite réelle qui tend vers | € R, on pose 4, = u, — [. La suite (u,) tend vers 0. Pour tout n > 1,

Oon pose :
n n

1 @ 1 1
Uy = — Uy = — un—l:<f un)—l
n =l
n
un)est
k=1

La suite (v,) tend vers 0 puisque, d’apres la question précédente, la suite (u,,) tend vers 0. Ainsi (—
n

une suite qui tend vers [. Ce qui démontre le théoreme de Cesaro.

Pour donner un contre-exemple & la réciproque, on pose pour tout n > 1 : u, = (—1)", la suite (v,) associée

est :

13 { 0 si n est pair

—— s8I n est impair
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4.

Il est clair que (vy,) tend vers 0 tandis que (u,) ne converge pas, ceci démontre que la réciproque du théoreme
de Cesaro est fausse.

. On suppose que la suite (u,) tend vers +oo. Soit A € R, il existe N € N* tel que pour tout n > N, u, > A+ 1.

Pour tout n > N, on a :

1 n 1 N-1 1 n 1 N-1 1 n
Uy = — Up = — — > — —
k=1 k=1 k=N k=1 k=N
~——
1) (2
L’expression (1) tend vers 0 quand n tend vers +oo puisque c’est le produit d’une constante avec une suite qui
o i 1
tend vers 0, ainsi il existe N > N tel que pour tout n > N', — Z up > —3
n
k=1

On peut également minorer I'expression (2) :

(A+1):n_TNJrl(AJrl):(AJrI)Jr#(AJrl)

3)
L’expression (3) tend vers 0 quand n tend vers +oo, ainsi il existe N > N tel que pour tout n > N” :
—-N+1 1
—(A+1) > —5
En remettant toutes les minorations obtenues bout & bout, on a pour tout n > max(N, N', N") :
1 « 1 1

C’est la définition de (vy,) tend vers +oo.

Si (uy) tend vers + oo alors (vy,) tend vers + oo

(a) Pour n > 1, on considere la suite w,, = up4+1 — uy,. D’apres 'hypothese de la question, (w,) tend vers .
n

1
En appliquant le théoreme de Cesaro cela signifie que la suite (— Z wk> tend également vers [. Or pour
n

k=1
tout n > 1, on a:
n

S we= 13 )= )
— ) wp=— Ugp1 — Uk) = —(Upy1 — U
n 2 k= Bl — Uk) = o Untl 1

k=1
Un+1

Ce qui démontre que lim

= [. Ici, on a un petit probleme d’indice puisque 'on souhaitait avoir
n—-+oo n

lim — =1. On peut contourner ce probleme en écrivant que pour tout n > 1 :
n—+o0o N
Up+1  Unt1 n
n+1 n n+1
N——
—1
. . Un+1 . u
Ainsi lim — = lim — = et comme ! = 0, on peut en conclure que :
n—+oon + 1 n—+oo N
. U
lim — =1

n—+oo nl
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(b) Pour tout n € N*, on considére la suite ¢,, = In(u,) qui est bien définie puisque la suite (u,) est & termes

1 1
(¢) Pour tout n > 1, on pose u, = H (1 + %) de telle sorte que w,, = uy.

— 1In({). En utilisant les calculs faits dans la question

Un+1 )
n—-+o0o

strictement positifs. On a t,11 —t, = In (
uTL

t 1
précédente cela implique que lim — = In(l). C’est-a-dire que la suite <— ln(un))tend vers In(l) ce qui
n—+oo 1 n

1
est équivalent a dire que la suite (ln(u,’{ )) tend vers In(l) ou encore que :

1
Iim ujy =1
n—-40o

n 1

k=1

On a:

n!
(d) Pour n € N*, on pose u, = —- qui est bien une suite a termes strictement positifs. On a :
n

Upyr  (n+1)In" _( n )n:<1+1>_n

u, nln+ 1)t \np 41 n

son 12 , . n N . Un+1 _ R
Or, comme nous 'avons déja démontré en cours, lim (1 + —) =edon lim ——= =e ! Dapres la
n

n—-+oo n—+00  Up

1
question 4.(b), on en déduit que lim wu; = e . Qest-a-dire :
n—-+0oo

Exercice 2

1. La fonction f est définie sur l'intervalle I, afin de pouvoir calculer f(u,) & chaque étape, nous allons démontrer
par récurrence sur n € N :

H, : up, €l

e Initialisation. D’apres 'hypothese de I’énoncé ug € I.

e Hérédité. On suppose que, pour n fixé, u, € I. On a up+1 = f(uy) € I puisque f est & valeurs dans I. Ce
qui acheve la récurrence.

(up,) est bien définie

2. La aussi, une récurrence va faire I'affaire. Pour n un entier naturel, on considére ’hypothese de récurrence :

Hy o unt1 — un| < K" |ug — ug
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e Initialisation. La formule au rang n = 0 devient : |u; — ug| < |u; — |

e Hérédité. On fixe un entier naturel n et 'on suppose que : |up41 — up| < k™ |u; — up|. D’apres hypothese
faite sur la fonction f et en utilisant I’hypothese de récurrence, on a :

tn2 — tns| = |f(uns1) = flun)] < kluper — un| < & Hug — gl

Ce qui démontre H,,+1 et acheve la récurrence.

Vn €N, |un+1 - Un| < kn|u1 - UO‘

3. Le facteur % qui apparait dans la formule laisse penser que 'on va sommer les inégalités précédentes. Pour

n—1
un entier naturel n, on a la somme télescopique : u, — ug = E (uj+1 — u;). Pour tout entier naturel n, en
. . =0
utilisant ’'inégalité triangulaire et la question précédente, on a :

n—1 n—1 n—1 ‘ 1 — kn
\un — u0] = ‘ Z(UH_I — u,) S Z |ui+1 — Uz’ § Zkz|ul — UO’ = 11— /{: ]ul — Ug
=0 =0 1=0
. n e 1 s
Par hypothese, on a k € [0, 1] donc k" € [0, 1], ainsi Tk < T Ce qui démontre que :
1
Vn e N, Ju, —up| < 1 7k|u1 — up|

Soit n € N, en utilisant I'inégalité triangulaire généralisée, on a :

|un| — |uo| < |un —ugl| < |ur — up| ce qui donne |uy,| < |ug| + luy — o)

1—-k 1-k

|u1 — ug| est une constante.

1
Ceci démontre que la suite (u,) est bornée puisque |ug| + T %

(uy) est bornée

Remarque. Dans cette question, nous avons utilisé le fait que si (x;)1<i<n € R™ alors :

n n
D] <Dl
=1 =1

Cela se démontre par récurrence sur n & partir de l'inégalité triangulaire usuelle.

4. La suite (uy) est une suite réelle bornée, d’apres le théoreme de Bolzano-Weierstrass, il existe une extractrice
¢ telle que (uy(,)) converge vers un réel [. D’apres la question 1., la suite (uy(,)) est une suite d’éléments de 1.
Par hypothese, l'intervalle I est fermé, ainsi la limite de cette suite est également dans I.

Il existe une extractrice ¢ telle que (u,,)) converge vers [ € I
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5. Soit n un entier naturel, on a :

|f(l) _” = |(f(l) _f(ugo(n)»+(f(u<p(n))_u<p(n))+(u<p(n) _l)| < ‘f(l) - f(ugo(n))| +|f(u<p(n)) - uga(n)H_ |u<p(n) - ”
(1) (2) (3)

Examinons chacune des quantités mises en jeu :
(1) On a: [f(I) = f(up(m))| < k|l = upem)| d’apres la propriété sur la fonction f.

(2) On a: [f(upmn)) = Upmn)| = [tpm)+1 — Upm)| < k#™ |uy — o en utilisant la majoration obtenue & la question
2.

En reprenant la majoration précédente, on a :

1F (1) = U < k= wpmy] + 52 ug — uo| + |1 = up(my] = (& + D) — wppmy] + £ Jur —uo| (%)
—_—
(A) (B)

Les quantités A et B tendent vers O car :
(A) lirf (k + )|l = ug(n)| = 0 puisque (uy(,)) tend vers [ et k + 1 est une constante.
n—-+0oo
(B) lirf k™ |uy — ug| = 0 puisque k € [0,1] et lirf p(n) = +o00, la quantité |u; — up| étant fixée.
Finalement en passant a la limite dans 'inégalité (%), on obtient |f(I) — | < 0, c’est-a-dire f(I) = 1.

[ est un point fixe de f I

6. Démontrons la propriété annoncée par récurrence sur n € N, on pose :

Hy o un — U < E"ug — 1

e Initialisation. Si n = 0, I'inégalité devient |up — | < |ug — [|, ce qui démontre que H est vraie.
e Hérédité. On suppose H,, vérifiée pour un entier naturel n fixé. En utilisant le fait que f(I) = [, la propriété
de la fonction f et I'hypothese de récurrence, on a :

[uns1 = U =1 f(un) = FU)] < Klun — 1] <k x k" |ug — 1] = k" ug —

Ce qui acheve la récurrence et démontre que H, 1 est vraie.

VneN, |u, — 1] < k"|ug—1|

Or lim k"|up—1] =0 car ET E™ = 0 puisque k € [0, 1[. Ceci démontre que :

n—-+o0o
n—-+4o0o

7. A ce stade de I’étude, nous avons démontré le théoréme annoncé, excepté le fait que le point fixe est unique.
Supposons que (I, m) € T 2 soient deux points fixes de f, on a :

= m| =|f(l) — f(m)| < k|l —m| < |l —m| car k < 1

f possede un unique point ﬁxe.

Ce théoréme est utilisé pour trouver une valeur approchée d’un point fixe de f, en calculant quelques termes
de la suite (u,). Une fonction vérifiant la condition de I’énoncé est appelée une fonction k-lipschitzienne, nous
verrons plus tard dans l’année comment en trouver.

Ce qui démontre que | = m.




