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Exercice 1

Les questions 1. et 2. constituent le théorème de Cesàro, c’est un grand classique en classes préparatoires.

1. (a) Soit ε ∈ R∗+, comme la suite (un) tend vers 0, il existe n0 ∈ N∗ tel que pour tout n ≥ n0, |un| ≤
ε

2
.

Ainsi pour n ≥ n0, en utilisant l’inégalité triangulaire, on a :∣∣∣ 1
n

n∑
k=n0

uk

∣∣∣ ≤ 1

n

n∑
k=n0

|uk| =
1

n

n∑
k=n0

ε

2
=

n− n0 + 1

n
× ε

2
≤ ε

2

La dernière inégalité étant justifiée par le fait que
n− n0 + 1

n
≤ 1 puisque n ≥ n0 ≥ 1.

∃n0 ∈ N∗, ∀n ≥ n0,
∣∣∣ 1
n

n∑
k=n0

uk

∣∣∣ ≤ ε

2

(b) L’entier n0 étant fixé dans la question précédente, l’expression

n0−1∑
k=1

uk est constante, notons-là A. La suite(A
n

)
n≥1

tend vers 0, ainsi, il existe n1 ∈ N∗ tel que pour tout n ≥ n1 :
∣∣∣A
n

∣∣∣ ≤ ε

2
. Ce qui démontre

exactement que :

∃n1 ∈ N∗, ∀n ≥ n1,
∣∣∣ 1
n

n0−1∑
k=1

uk

∣∣∣ ≤ ε

2

(c) Il s’agit de faire le bilan des deux questions précédentes, si l’on prend N = max(n0, n1), on a pour n ≥ N :

|vn| =
∣∣∣ 1
n

n∑
k=1

uk

∣∣∣ =
∣∣∣ 1
n

( n0−1∑
k=1

uk +
n∑

k=n0

uk

)∣∣∣ ≤ ∣∣∣ 1
n

n0−1∑
k=1

uk

∣∣∣+
∣∣∣ 1
n

n∑
k=n0

uk

∣∣∣ ≤ ε

2
+

ε

2
= ε

Ceci en utilisant l’inégalité triangulaire et les résultats des deux questions précédentes.

On a démontré que :
∀ε > 0, ∃N ∈ N, ∀n ≥ N, |vn| ≤ ε

(vn) tend vers 0

2. Soit (un) une suite réelle qui tend vers l ∈ R, on pose ûn = un − l. La suite (ûn) tend vers 0. Pour tout n ≥ 1,
on pose :

v̂n =
1

n

n∑
k=1

ûn =
1

n

n∑
k=1

(un − l) =
( 1

n

n∑
k=1

un

)
− l

La suite (v̂n) tend vers 0 puisque, d’après la question précédente, la suite (ûn) tend vers 0. Ainsi
( 1

n

n∑
k=1

un

)
est

une suite qui tend vers l. Ce qui démontre le théorème de Cesàro.

Pour donner un contre-exemple à la réciproque, on pose pour tout n ≥ 1 : un = (−1)n, la suite (vn) associée
est :

vn =
1

n

n∑
k=1

(−1)k =

{
0 si n est pair

− 1

n
si n est impair
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Il est clair que (vn) tend vers 0 tandis que (un) ne converge pas, ceci démontre que la réciproque du théorème
de Cesàro est fausse.

3. On suppose que la suite (un) tend vers +∞. Soit A ∈ R, il existe N ∈ N∗ tel que pour tout n ≥ N , un ≥ A+ 1.

Pour tout n ≥ N , on a :

vn =
1

n

n∑
k=1

uk =
1

n

N−1∑
k=1

uk +
1

n

n∑
k=N

uk ≥
1

n

N−1∑
k=1

uk︸ ︷︷ ︸
(1)

+
1

n

n∑
k=N

uk︸ ︷︷ ︸
(2)

L’expression (1) tend vers 0 quand n tend vers +∞ puisque c’est le produit d’une constante avec une suite qui

tend vers 0, ainsi il existe N ′ ≥ N tel que pour tout n ≥ N ′,
1

n

N−1∑
k=1

uk ≥ −
1

2
.

On peut également minorer l’expression (2) :

1

n

n∑
k=N

uk ≥
1

n

n∑
k=N

(A + 1) =
n−N + 1

n
(A + 1) = (A + 1) +

−N + 1

n
(A + 1)︸ ︷︷ ︸

(3)

L’expression (3) tend vers 0 quand n tend vers +∞, ainsi il existe N ′′ ≥ N tel que pour tout n ≥ N ′′ :
−N + 1

n
(A + 1) ≥ −1

2
.

En remettant toutes les minorations obtenues bout à bout, on a pour tout n ≥ max(N,N ′, N ′′) :

vn =
1

n

n∑
k=1

uk ≥ −
1

2
+ (A + 1)− 1

2
= A

C’est la définition de (vn) tend vers +∞.

Si (un) tend vers +∞ alors (vn) tend vers +∞

4. (a) Pour n ≥ 1, on considère la suite wn = un+1 − un. D’après l’hypothèse de la question, (wn) tend vers l.

En appliquant le théorème de Cesàro cela signifie que la suite
( 1

n

n∑
k=1

wk

)
tend également vers l. Or pour

tout n ≥ 1, on a :

1

n

n∑
k=1

wk =
1

n

n∑
k=1

(uk+1 − uk) =
1

n

(
un+1 − u1

)
Ce qui démontre que lim

n→+∞

un+1

n
= l. Ici, on a un petit problème d’indice puisque l’on souhaitait avoir

lim
n→+∞

un
n

= l. On peut contourner ce problème en écrivant que pour tout n ≥ 1 :

un+1

n + 1
=

un+1

n
× n

n + 1︸ ︷︷ ︸
→1

Ainsi lim
n→+∞

un+1

n + 1
= lim

n→+∞

un
n

= l et comme l 6= 0, on peut en conclure que :

lim
n→+∞

un
nl

= 1
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(b) Pour tout n ∈ N∗, on considère la suite tn = ln(un) qui est bien définie puisque la suite (un) est à termes

strictement positifs. On a tn+1 − tn = ln
(un+1

un

)
−→

n→+∞
ln(l). En utilisant les calculs faits dans la question

précédente cela implique que lim
n→+∞

tn
n

= ln(l). C’est-à-dire que la suite
( 1

n
ln(un)

)
tend vers ln(l) ce qui

est équivalent à dire que la suite
(

ln(u
1
n
n )
)

tend vers ln(l) ou encore que :

lim
n→+∞

u
1
n
n = l

(c) Pour tout n ≥ 1, on pose un =
n∏

k=1

(
1 +

1

k

)
de telle sorte que wn = u

1
n
n .

On a :
un+1

un
= 1 +

1

n + 1
−→

n→+∞
1

D’après la question précédente, qui s’applique puisque (un) est bien une suite à valeurs dans R∗+, on a :

lim
n→+∞

n∏
k=1

(
1 +

1

k

) 1
n

= 1

(d) Pour n ∈ N∗, on pose un =
n!

nn
qui est bien une suite à termes strictement positifs. On a :

un+1

un
=

(n + 1)!nn

n!(n + 1)n+1
=
( n

n + 1

)n
=
(

1 +
1

n

)−n
Or, comme nous l’avons déjà démontré en cours, lim

n→+∞

(
1 +

1

n

)n
= e d’où lim

n→+∞

un+1

un
= e−1. D’après la

question 4.(b), on en déduit que lim
n→+∞

u
1
n
n = e−1. C’est-à-dire :

lim
n→+∞

(n!)
1
n

n
= e−1

Exercice 2

1. La fonction f est définie sur l’intervalle I, afin de pouvoir calculer f(un) à chaque étape, nous allons démontrer
par récurrence sur n ∈ N :

Hn : un ∈ I

• Initialisation. D’après l’hypothèse de l’énoncé u0 ∈ I.

• Hérédité. On suppose que, pour n fixé, un ∈ I. On a un+1 = f(un) ∈ I puisque f est à valeurs dans I. Ce
qui achève la récurrence.

(un) est bien définie

2. Là aussi, une récurrence va faire l’affaire. Pour n un entier naturel, on considère l’hypothèse de récurrence :

Hn : |un+1 − un| ≤ kn|u1 − u0|
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• Initialisation. La formule au rang n = 0 devient : |u1 − u0| ≤ |u1 − u0|.
• Hérédité. On fixe un entier naturel n et l’on suppose que : |un+1 − un| ≤ kn|u1 − u0|. D’après l’hypothèse
faite sur la fonction f et en utilisant l’hypothèse de récurrence, on a :

|un+2 − un+1| = |f(un+1)− f(un)| ≤ k|un+1 − un| ≤ kn+1|u1 − u0|

Ce qui démontre Hn+1 et achève la récurrence.

∀n ∈ N, |un+1 − un| ≤ kn|u1 − u0|

3. Le facteur
1

1− k
qui apparâıt dans la formule laisse penser que l’on va sommer les inégalités précédentes. Pour

un entier naturel n, on a la somme télescopique : un − u0 =

n−1∑
i=0

(ui+1 − ui). Pour tout entier naturel n, en

utilisant l’inégalité triangulaire et la question précédente, on a :

|un − u0| =
∣∣∣ n−1∑
i=0

(ui+1 − ui)
∣∣∣ ≤ n−1∑

i=0

|ui+1 − ui| ≤
n−1∑
i=0

ki|u1 − u0| =
1− kn

1− k
|u1 − u0|

Par hypothèse, on a k ∈ [0, 1[ donc kn ∈ [0, 1[, ainsi
1− kn

1− k
≤ 1

1− k
. Ce qui démontre que :

∀n ∈ N, |un − u0| ≤
1

1− k
|u1 − u0|

Soit n ∈ N, en utilisant l’inégalité triangulaire généralisée, on a :

|un| − |u0| ≤ |un − u0| ≤
1

1− k
|u1 − u0| ce qui donne |un| ≤ |u0|+

1

1− k
|u1 − u0|

Ceci démontre que la suite (un) est bornée puisque |u0|+
1

1− k
|u1 − u0| est une constante.

(un) est bornée

Remarque. Dans cette question, nous avons utilisé le fait que si (xi)1≤i≤n ∈ Rn alors :

∣∣∣ n∑
i=1

xi

∣∣∣ ≤ n∑
i=1

|xi|

Cela se démontre par récurrence sur n à partir de l’inégalité triangulaire usuelle.

4. La suite (un) est une suite réelle bornée, d’après le théorème de Bolzano-Weierstrass, il existe une extractrice
ϕ telle que (uϕ(n)) converge vers un réel l. D’après la question 1., la suite (uϕ(n)) est une suite d’éléments de I.
Par hypothèse, l’intervalle I est fermé, ainsi la limite de cette suite est également dans I.

Il existe une extractrice ϕ telle que (uϕ(n)) converge vers l ∈ I
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5. Soit n un entier naturel, on a :

|f(l)− l| = |(f(l)−f(uϕ(n)))+(f(uϕ(n))−uϕ(n))+(uϕ(n)− l)| ≤ |f(l)− f(uϕ(n))|︸ ︷︷ ︸
(1)

+ |f(uϕ(n))− uϕ(n)|︸ ︷︷ ︸
(2)

+ |uϕ(n) − l|︸ ︷︷ ︸
(3)

Examinons chacune des quantités mises en jeu :

(1) On a : |f(l)− f(uϕ(n))| ≤ k|l − uϕ(n)| d’après la propriété sur la fonction f .

(2) On a : |f(uϕ(n))−uϕ(n)| = |uϕ(n)+1−uϕ(n)| ≤ kϕ(n)|u1−u0| en utilisant la majoration obtenue à la question
2.

En reprenant la majoration précédente, on a :

|f(l)− l| ≤ k|l − uϕ(n)|+ kϕ(n)|u1 − u0|+ |l − uϕ(n)| = (k + 1)|l − uϕ(n)|︸ ︷︷ ︸
(A)

+ kϕ(n)|u1 − u0|︸ ︷︷ ︸
(B)

(F)

Les quantités A et B tendent vers 0 car :

(A) lim
n→+∞

(k + 1)|l − uϕ(n)| = 0 puisque (uϕ(n)) tend vers l et k + 1 est une constante.

(B) lim
n→+∞

kϕ(n)|u1 − u0| = 0 puisque k ∈ [0, 1[ et lim
n→+∞

ϕ(n) = +∞, la quantité |u1 − u0| étant fixée.

Finalement en passant à la limite dans l’inégalité (F), on obtient |f(l)− l| ≤ 0, c’est-à-dire f(l) = l.

l est un point fixe de f

6. Démontrons la propriété annoncée par récurrence sur n ∈ N, on pose :

Hn : |un − l| ≤ kn|u0 − l|

• Initialisation. Si n = 0, l’inégalité devient |u0 − l| ≤ |u0 − l|, ce qui démontre que H0 est vraie.

• Hérédité. On suppose Hn vérifiée pour un entier naturel n fixé. En utilisant le fait que f(l) = l, la propriété
de la fonction f et l’hypothèse de récurrence, on a :

|un+1 − l| = |f(un)− f(l)| ≤ k|un − l| ≤ k × kn|u0 − l| = kn+1|u0 − l|

Ce qui achève la récurrence et démontre que Hn+1 est vraie.

∀n ∈ N, |un − l| ≤ kn|u0 − l|

Or lim
n→+∞

kn|u0 − l| = 0 car lim
n→+∞

kn = 0 puisque k ∈ [0, 1[. Ceci démontre que :

lim
n→+∞

un = l

7. À ce stade de l’étude, nous avons démontré le théorème annoncé, excepté le fait que le point fixe est unique.
Supposons que (l,m) ∈ I2 soient deux points fixes de f , on a :

|l −m| = |f(l)− f(m)| ≤ k|l −m| < |l −m| car k < 1

Ce qui démontre que l = m.

f possède un unique point fixe

Ce théorème est utilisé pour trouver une valeur approchée d’un point fixe de f , en calculant quelques termes
de la suite (un). Une fonction vérifiant la condition de l’énoncé est appelée une fonction k-lipschitzienne, nous
verrons plus tard dans l’année comment en trouver.


