- 1. Vrai ou faux : tout nombre complexe possède exactement deux racines carrées.
- 2. Quelles sont les racines carrées de 2i?
- 3. Quels sont les deux racines carrées de $-\pi$?
- 4. Vrai ou faux : une équation polynomiale de degré 3 a toujours 3 solutions complexes.
- 5. Justifier qu'une équation polynomiale de degré 3 ne peut pas avoir strictement plus de 3 solutions.
- 6. Trouver de tête les solutions de (E) : $2z^2 + (8+4i)z + 16i = 0$

1. Vrai ou faux : tout nombre complexe possède exactement deux racines carrées.

Réponse : C'est faux, 0 n'a qu'une seule racine carrée : 0.

2. Quelles sont les racines carrées de 2i?

Réponse : On cherche z = x + iy avec $(x, y) \in \mathbb{R}^2$ tel que $z^2 = 2i$. On obtient les trois équations :

$$\begin{cases} x^2 - y^2 = 0 \\ 2xy = 2 \\ x^2 + y^2 = 2 \end{cases}$$

Ce qui nous donne z = 1 + i ou z = -1 - i.

3. Quels sont les deux racines carrées de $-\pi$?

Réponse : Il y a deux racines carrées :

$$i\sqrt{\pi}$$
 et $-i\sqrt{\pi}$

4. Vrai ou faux : une équation polynomiale de degré 3 a toujours 3 solutions complexes.

Réponse : C'est faux, l'équation de degré $3: z^3 = 0$ n'a clairement qu'une solution : 0.

5. Justifier qu'une équation polynomiale de degré 3 ne peut pas avoir strictement plus de 3 solutions.

Réponse : S'il y avait 4 solutions, z_1 , z_2 , z_3 et z_4 , on pourrait factoriser le polynôme de degré 3 par $(z-z_1)(z-z_2)(z-z_3)(z-z_4)$. C'est impossible pour des raisons de degré.

6. Trouver de tête les solutions de (E) : $2z^2 + (8+4i)z + 16i = 0$

Réponse : La somme des solutions vaut $-\frac{b}{a} = -4 - 2i$ et le produit vaut $\frac{c}{a} = 8i$. Ainsi les deux solutions sont :

$$z_1 = -4$$
 et $z_2 = -2i$