A-Calculs de base

- 1. Soit $n \in \mathbb{N}$, donner le signe de $u_n = -\frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2}$.
- 2. On pose $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{u_n}$. Démontrer que pour tout $n \in \mathbb{N}$, on a $u_n = \frac{F_{n+2}}{F_{n+1}}$ où (F_n) désigne (bien sûr!) la suite de Fibonacci.
- 3. Écrire à l'aide notamment d'une factorielle le produit des entiers pairs de 2 à 2n où $n \in \mathbb{N}^*$.
- 4. Déterminer l'ensemble de définition et le signe de la fonction $x \mapsto \frac{x^3 1}{x^3 + 1}$.

B-Sommes et produits

- 5. Soit $n \in \mathbb{N}^*$, simplifier $\prod_{k=1}^n \frac{k}{k+2}$.
- 6. Soit $n \in \mathbb{N}^*$, simplifier $\sum_{k=4}^{n+3} (2k+1)$.
- 7. Soit $n \in \mathbb{N}^*$, simplifier $\sum_{k=1}^n 3^{2k-1}$.
- 8. Soit $n \in \mathbb{N}^*$, simplifier $\sum_{k=0}^{n} \binom{n}{k} 5^{n-k}$.
- 9. Soit $n \in \mathbb{N}^*$, calculer : $S_n = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)}$.

C-Limites

- 10. Déterminer $\lim_{x\to 0} \frac{\operatorname{Arctan}(x)}{x}$.
- 11. Déterminer $\lim_{x\to 0^-} \frac{\operatorname{Arccos}(x)}{x}$.
- 12. Calcular $\lim_{x \to +\infty} \sqrt{x^2 + 4x + 3} + x + 2$.
- 13. Calcular $\lim_{x \to -\infty} \sqrt{x^2 + 4x + 3} + x + 2$.
- 14. Déterminer $\lim_{x \to -\infty} \frac{x^3 + x^2 + 5}{5x^3 x^2 + 2}$
- 15. Déterminer $\lim_{x\to 4} \frac{\sqrt{x}-2}{x^2-5x+4}$.
- 16. \bigstar Déterminer $\lim_{x \to -\infty} e^{\frac{1}{x}} \sqrt{x(x+2)} + x$.

D-Équations et inéquations

- 17. Trouver tous les x réels tels que : $|x+5| \le 100$.
- 18. Trouver tous les x réels tels que : $|2x| |2x + 2| + |x + 3| \le 3$.
- 19. Trouver tous les x réels vérifiant : $\frac{x-1}{x+1} < \frac{2x+1}{2x}$.
- 20. Trouver les réels x vérifiant l'équation : $\sqrt{x^2+3}+\sqrt{x-3}-\sqrt{-x^2+3x-2}=4$.
- 21. Résoudre l'équation $x^6 + x^4 = 80$ d'inconnue $x \in \mathbb{R}_+$.

E-Fonctions usuelles

- 22. Donner la valeur de $Arcsin\left(-\frac{\sqrt{3}}{2}\right)$.
- 23. Trouver tous les réels x tels que $e^x + 3e^{-x} = 4$.
- 24. Simplifier $\operatorname{Arccos}\left(\cos\left(\frac{13\pi}{3}\right)\right)$.
- 25. \bigstar Trouver tous les réels x vérifiant $\ln(1 + x \operatorname{th}(x)) = x$.
- 26. \bigstar Résoudre l'équation d'inconnue $x \in \mathbb{R}$: $\operatorname{Arcsin}(x) + \operatorname{Arcsin}(\sqrt{15}x) = \frac{\pi}{2}$.

F-Trigonométrie

- 27. Trouver tous les réels x vérifiant l'équation (E) : $\cos(2x) + \sin\left(\frac{\pi}{4} x\right) = 0$.
- 28. Trouver tous les réels x tels que : $\cos(x) + \cos(2x) + \cos(3x) + \cos(4x) = 0$.
- 29. Trouver tous les réels x tels que : $\cos(x) + \sqrt{3}\sin(x) = 1$.
- 30. Trouver tous les réels x tels que : $\left|\cos\left(3x \frac{\pi}{3}\right)\right| \ge \frac{1}{2}$.

G-Dérivation

- 31. Donner l'ensemble de dérivabilité et la dérivée de $f: x \mapsto \frac{1}{x^{\frac{3}{4}}}$
- 32. Donner l'ensemble de dérivabilité et dériver la fonction $f: x \mapsto \frac{1}{(x^2+1)\sqrt{x^2+1}}$.
- 33. Soit $f: x \mapsto \operatorname{Arcsin}(\sqrt{x}) \frac{1}{2}\operatorname{Arcsin}(2x-1)$. Déterminer l'ensemble de définition et de dérivabilité de f. Calculer f' et en déduire une simplification de f.

H-Intégration

- 34. Déterminer une primitive sur un ensemble à préciser de $f: t \mapsto \frac{12t^3 + 6t + 12}{(t^4 + t^2 + 4t + 6)^6}$.
- 35. Déterminer une primitive sur un ensemble à préciser de $f: t \mapsto (4t+2)(t^2+t+4)^{\frac{5}{2}}$.
- 36. Déterminer une primitive de $f: x \mapsto e^x \cos(x)$ à l'aide des nombres complexes.
- 37. Déterminer une primitive sur un ensemble à préciser de $f: t \mapsto \frac{1}{2 + \sin(t)^2}$.
- 38. Déterminer une primitive de $f: t \mapsto \frac{1}{t^2 + 3t + 4}$.
- 39. \bigstar Déterminer une primitive sur un ensemble à préciser de $f: t \mapsto \frac{\operatorname{th}(t)}{\operatorname{ch}(t) + 1}$.

I-Équations différentielles

- 40. Trouver toutes les fonctions de \mathbb{R}_+^* dans \mathbb{R} solutions de : $(E): xy'(x) + y(x) = \operatorname{Arctan}(x)$.
- 41. Résoudre sur $\mathbb{R} : (E) : y'' + y = 2\cos^2(x)$.

J-Nombres complexes

- 42. Trouver tous les $z \in \mathbb{C}$ tels que $z^2 2iz + 4 12i = 0$.
- 43. Donner une écriture exponentielle de $z_1 = 2\sqrt{6}(1+i)$ et $z_2 = \sqrt{2}(1+i\sqrt{3})$.
- 44. Calculer $\prod_{1 \le i < j \le 4} (x_j x_i)$ avec $x_1 = 1, x_2 = -1, x_3 = i$ et $x_4 = -i$.
- 45. \bigstar Montrer qu'il est impossible de trouver $n \in \mathbb{N}^*$ tel que $\left(\frac{2+i}{2-i}\right)^n = 1$.