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Problème

A-Préliminaires

1. L’équation (E) est une équation différentielle linéaire d’ordre 2 mais les coefficients ne sont pas constants,
contrairement au contexte du cours.

2. (a) L’équation ax+by = e représente une droite du plan pour tous (a, b) ∈ R2 sauf si (a, b) = (0, 0). Un vecteur
directeur a pour coordonnées (−b, a).

(b) On se place d’abord dans le cas où (a, b) 6= (0, 0) et (c, d) 6= (0, 0). Le système (S) admet une unique
solution si et seulement si les droites d’équations ax + by = e et cx + dy = f ne sont pas parallèles (ou
confondues), c’est-à-dire si et seulement si les vecteurs directeurs (−b, a) et (−d, c) ne sont pas colinéaires.
C’est équivalent à la condition (−b)c− a(−d) 6= 0, c’est-à-dire ad− bc 6= 0.

Dans le cas où (a, b) = (0, 0), la première équation devient e = 0. Si e 6= 0, le système n’a pas de solution
et si e = 0 le système est équivalent à cx + dy = f . Il y a deux cas à considérer, si (c, d) 6= (0, 0), le
système aura une infinité de solutions (tous les points de la droite) et si (c, d) = (0, 0) soit le système est
incompatible (si f 6= 0), soit tous les couples (x, y) ∈ R2 sont solutions (si f = 0).
Dans ce cas, le système n’aura jamais une unique solution et on a bien ad − bc = 0. Le cas (c, d) = (0, 0)
est identique. Finalement :

(S) a une unique solution si et seulement si ad− bc 6= 0

3. Soit x ∈ R \ {−1, 0, 1}, on réduit au même dénominateur le membre de droite :

a

x
+

b

x− 1
+

c

x+ 1
=
a(x− 1)(x+ 1) + bx(x+ 1) + cx(x− 1)

x(x− 1)(x+ 1)
=

(a+ b+ c)x2 + (b− c)x− a
x3 − x

On identifie avec le membre de gauche pour obtenir :
a+ b+ c = 3
b− c = 0
−a = 1

On résout ce système sans difficulté pour obtenir a = −1 et b = c = 2.

∀x ∈ R \ {−1, 0, 1}, 3x2 + 1

x3 − x
= −1

x
+

2

x− 1
+

2

x+ 1

B-Résolution de (H)

1. La fonction f0 est dérivable deux fois sur R en tant que fonction polynomiale. On a : f ′0 : x 7→ 1 et f ′′0 : x 7→ 0.
On a bien :

∀x ∈ R, (x2 − x)f ′′0 (x) + (x+ 1)f ′0(x)− f0(x) = 0

f0 est solution de (H) sur R
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2. (a) La fonction f est deux fois dérivable sur I comme produit de deux fonctions deux fois dérivables sur I.
Pour tout x ∈ I, on a :

f ′(x) = C ′(x)(x+ 1) + C(x) et f ′′(x) = C ′′(x)(x+ 1) + 2C ′(x)

On a :
f solution de (H) sur I ⇔ ∀x ∈ I, (x2 − x)f ′′(x) + (x+ 1)f ′(x)− f(x) = 0

⇔ ∀x ∈ I, (x2 − x)(C′′(x)(x+ 1) + 2C′(x)) + (x+ 1)(C′(x)(x+ 1) + C(x))− C(x)(x+ 1) = 0

⇔ ∀x ∈ I, (x3 − x)C′′(x) + (3x2 + 1)C′(x) = 0

⇔ C′ solution sur I de (H′) : (x3 − x)y′ + (3x2 + 1)y = 0

f est solution de (H) sur I si et seulement si C ′ est solution de (H′) sur I

(b) Soit x ∈ R, on remarque que x3 − x = x(x− 1)(x+ 1). Si l’on se place sur I qui est l’un des intervalles I2,
I3, J1 ou J2, cette expression ne s’annule pas. Ainsi, sur I, l’équation différentielle (H′) est équivalente à :

y′ +
3x2 + 1

x3 − x
y = 0

On reconnait une équation différentielle linéaire d’ordre 1 que l’on sait résoudre. On a :

a : x 7→ 3x2 + 1

x3 − x
= −1

x
+

2

x− 1
+

2

x+ 1

d’après la question 3. de la partie A. Une primitive de a sur I est A : x 7→ − ln(|x|)+2 ln(|x−1|)+2 ln(|x+1|).
Les solutions de (H′) sur I sont les fonctions :

x 7→ λeln(|x|)−2 ln(|x−1|)−2 ln(|x+1|) = λeln(|x|)−ln(|x−1|
2)−ln(|x+1|2) =

λ|x|
(x− 1)2(x+ 1)2

=
λ|x|

(x2 − 1)2

où λ est une constante réelle. Quitte à changer λ en −λ, puisque x 7→ |x| ne change pas de signe sur I, on
a :

les solutions de (H′) sur I sont les fonctions x 7→ λx

(x2 − 1)2
où λ ∈ R

(c) D’après les deux questions précédentes, on a C ′ : x 7→ λx

(x2 − 1)2
avec λ ∈ R. En reconnaissant une forme

u′

u2
qui s’intègre en −1

u
, il existe µ ∈ R tel que C : x 7→ − λ

2(x2 − 1)
+ µ. On en déduit que les solutions de

(H) sur I sont les fonctions x 7→ C(x)(x+1) = − λ

2(x− 1)
+µ(x+1) où λ et µ décrivent R. Pour simplifier

encore l’écriture, on peut remarquer que quand λ décrit R, −1

2
λ décrit R. Finalement :

les solutions de (H) sur I sont les fonctions x 7→ λ

x− 1
+ µ(x+ 1) où (λ, µ) ∈ R2

(d) On procède par analyse-synthèse.
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Analyse. Soit f une solution de (H) sur l’intervalle I1 =]−∞, 0[, en particulier f est solution de (H) sur
J1 et J2. C’est-à-dire qu’il existe (λ, µ, λ′, µ′) ∈ R4 tels que :

f : I1 → R

x 7→


λ

x− 1
+ µ(x+ 1) si x < −1

λ′

x− 1
+ µ′(x+ 1) si − 1 < x < 0

La valeur en −1 de f ne peut pas être trouvée uniquement à l’aide de l’équation (H). La fonction f est
dérivable deux fois sur I1, en particulier elle est continue sur I1. La continuité en −1 impose : lim

x→−1−
f(x) =

lim
x→−1+

f(x), c’est-à-dire : −λ
2
= −λ

′

2
. On obtient λ = λ′ et au passage on sait que f(−1) = −λ

2
.

À ce stade, on a :
f : I1 → R

x 7→


λ

x− 1
+ µ(x+ 1) si x < −1

λ

x− 1
+ µ′(x+ 1) si − 1 < x < 0

La fonction f étant dérivable deux fois sur I1, on a :

f ′ : I1 → R

x 7→


− λ

(x− 1)2
+ µ si x < −1

− λ

(x− 1)2
+ µ′ si − 1 < x < 0

La fonction f ′ est dérivable sur I1 car f est dérivable deux fois sur I1, en particulier f ′ est continue sur I1
donc continue en −1. On a ainsi :

lim
x→−1−

f ′(x) = lim
x→−1+

f ′(x)⇔ −λ
4
+ µ = −λ

4
+ µ′

On en déduit que µ = µ′. Finalement, on obtient f : x 7→ λ

x− 1
+ µ(x+ 1) définie sur I1.

Synthèse. On vérifie que la fonction f définie ci-dessus est solution de (H) sur I1. En effet, cette fonction
est dérivable deux fois sur I1 et :

f ′ : x 7→ − λ

(x− 1)2
+ µ et f ′′ : x 7→ 2λ

(x− 1)3

∀x ∈ I, (x2 − x)f ′′(x) + (x+ 1)f ′(x)− f(x) = (x2 − x) 2λ

(x− 1)3
− (x+ 1)

( λ

(x− 1)2
− µ

)
− λ

x− 1
− µ(x+ 1) = 0

Les solutions de (H) sur I1 sont les fonctions x 7→ λ

x− 1
+ µ(x+ 1) où (λ, µ) ∈ R2
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(e) Analyse. Soit f une solution de (H) sur R, en particulier f est solution de (H) sur I1, I2 et I3. D’après
les questions précédentes, cela signifie qu’il existe (λ1, µ1, λ2, µ2, λ3, µ3) ∈ R6 tels que :

f : R → R

x 7→



λ1
x− 1

+ µ1(x+ 1) si x < 0

λ2
x− 1

+ µ2(x+ 1) si 0 < x < 1

λ3
x− 1

+ µ3(x+ 1) si x > 1

Les valeurs de f en 0 et 1 n’étant pas directement données par l’équation.

• Continuité en 1. La fonction f étant dérivable deux fois sur R, elle est en particulier continue sur
R. La continuité en 1 impose : lim

x→1−
f(x) = lim

x→1+
f(x) et cette limite doit être finie. Cela implique que

λ2 = λ3 = 0. À ce stade, on sait que la fonction f s’écrit :

f : R → R

x 7→



λ1
x− 1

+ µ1(x+ 1) si x < 0

µ2(x+ 1) si 0 < x < 1

µ3(x+ 1) si x > 1

• Dérivabilité en 1. On a pour tout x ∈]0, 1[, f ′(x) = µ2 et pour tout x ∈]1,+∞[, f ′(x) = µ3. La
fonction f ′ étant dérivable, elle est continue en 1 et cela impose µ2 = µ3. À ce stade, on sait que la fonction
f s’écrit :

f : R → R

x 7→


λ1
x− 1

+ µ1(x+ 1) si x < 0

µ2(x+ 1) si x > 0

• Continuité en 0. La continuité de f en 0 impose lim
x→0−

f(x) = lim
x→0+

f(x), cela se traduit par −λ1+µ1 =
µ2.

• Dérivabilité en 0. On peut vérifier que la dérivabilité en 0 n’impose aucune condition supplémentaire
sur λ1, µ1 et µ2.

• Dérivabilité seconde en 0. Par hypothèse, la fonction f est dérivable deux fois sur R en particulier
elle est dérivable deux fois en 0. On a :

f ′ : R → R

x 7→


− λ1
(x− 1)2

+ µ1 si x < 0

µ2 si x > 0
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Remarquons que la fonction f ′ est continue en 0 car dérivable en 0 donc f ′(0) = µ2. Formons le taux de
variation de f ′ en 0. Pour x < 0, on a, en utilisant que µ1 − µ2 = λ1 :

f ′(x)− f ′(0)
x− 0

=
− λ1

(x−1)2 + µ1 − µ2
x− 0

=
− λ1

(x−1)2 + λ1

x
=

λ1
(x− 2)x2

Afin que ce taux de variation ait une limite en 0−, on doit avoir λ1 = 0 et comme −λ1+µ1 = µ2, on obtient
µ1 = µ2. Finalement, on a :

f : R → R

x 7→ µ2(x+ 1)

Synthèse. La fonction f : x 7→ µ(x+ 1) où µ ∈ R est clairement solution de (H) sur R.

Les solutions de (H) sur R sont les fonctions x 7→ µ(x+ 1) où µ ∈ R

C-Problème de Cauchy pour (H)

1. D’après la partie B, les solutions de (H) sur I sont de la forme y : x 7→ λ

x− 1
+ µ(x+ 1) avec (λ, µ) ∈ R2. Pour

tout x ∈ I, on a : y′(x) = − λ

(x− 1)2
+ µ, ainsi :

{
y(x0) = y0
y′(x0) = y′0

⇔


λ

x0 − 1
+ µ(x0 + 1) = y0

− λ

(x0 − 1)2
+ µ = y′0

Ce système admet une unique solution (λ, µ) ∈ R2 si et seulement si
1

x0 − 1
+(x0+1)× 1

(x0 − 1)2
=

2x0
(x0 − 1)2

6= 0

en utilisant la question 2. de la partie A. Ce qui est le cas car x0 6= 0 puisque 0 /∈ I. Les valeurs de λ et µ sont
donc déterminées de façon unique ainsi il y a bien une unique solution au problème (P).

(P) a une unique solution sur I

2. Les solution de (H) sur R sont de la forme f : x 7→ µ(x + 1). Les conditions f(0) = 1 et f ′(0) = 2 sont
incompatibles car f(0) = µ et f ′(0) = µ.

3. Un tel problème ne peut admettre plusieurs solutions car le seul point commun à deux courbes représentatives
des fonctions x 7→ µ(x + 1) où µ ∈ R est (−1, 0). Afin que le problème (P) ait plusieurs solutions, il faut donc
la condition initiale y(−1) = 0, la seconde condition est de la forme y′(−1) = y′0 avec y′0 ∈ R. Il y a alors une
unique solution x 7→ y′0(x+ 1). C’est impossible que le problème (P) possède plusieurs solutions.

D-Résolution de (E)
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1. On utilise les résultats de la partie B donnant la forme des solutions de (H) sur I. Soit f une fonction dérivable
deux fois sur I, on a :

f solution de (E) sur I ⇔ ∀x ∈ I, (x2 − x)f ′′ + (x+ 1)f ′ − f = u(x)

⇔ ∀x ∈ I, (x2 − x)f ′′ + (x+ 1)f ′ − f = (x2 − x)ϕ′′0 + (x+ 1)ϕ′0 − ϕ0

⇔ ∀x ∈ I, (x2 − x)(f − ϕ0)
′′ + (x+ 1)(f − ϕ0)

′ − (f − ϕ0) = 0

⇔ f − ϕ0 est solution de (H) sur I

⇔ ∃(λ, µ) ∈ R2, ∀x ∈ I, f(x)− ϕ0(x) =
λ

x− 1
+ µ(x+ 1)

⇔ ∃(λ, µ) ∈ R2, ∀x ∈ I, f(x) = ϕ0(x) +
λ

x− 1
+ µ(x+ 1)

Les solutions de (E) sur I sont les fonctions x 7→ ϕ0(x) +
λ

x− 1
+ µ(x+ 1) où (λ, µ) ∈ R2

2. L’équation devient :
(E) : (x2 − x)y′′ + (x+ 1)y′ − y = 1

La fonction constante égale à −1 définie sur I est une solution particulière évidente.

Les solutions de (E) sur I sont de la forme : x 7→ −1 + λ

x− 1
+ µ(x+ 1) avec (λ, µ) ∈ R2

La démarche sur R est exactement la même que précédemment, au changement des solutions de l’équation
homogène près.

Les solutions de (E) sur I sont de la forme : x 7→ −1 + µ(x+ 1) avec µ ∈ R

3. (a) La fonction g est dérivable deux fois sur I comme somme et produit de fonctions dérivables deux fois sur
I. En utilisant la relation donnée dans l’énoncé, on a :

g′ : x 7→ λ′(x)

x− 1
− λ(x)

(x− 1)2
+ µ′(x)(x+ 1) + µ(x) = − λ(x)

(x− 1)2
+ µ(x)

g′′ : x 7→ − λ′(x)

(x− 1)2
+

2λ(x)

(x− 1)3
+ µ′(x)

On injecte dans l’équation (E) et on s’attend à avoir des simplifications par analogie avec la méthode de la
variation de la constante. Pour x ∈ I, on a : (x2 − x)g′′(x) + (x+ 1)g′(x)− g(x) =

(x2 − x)
(
− λ′(x)

(x− 1)2
+

2λ(x)

(x− 1)3
+ µ′(x)

)
+ (x+ 1)

(
− λ(x)

(x− 1)2
+ µ(x)

)
− λ(x)

x− 1
− µ(x)(x+ 1) =

− x

x− 1
λ′(x) + (x2 − x)µ′(x) = u(x)

∀x ∈ I, − x

x− 1
λ′(x) + (x2 − x)µ′(x) = u(x)
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(b) On va combiner les relations obtenues dans la question précédente. Soit x ∈ I :
λ′(x)

x− 1
+ µ′(x)(x+ 1) = 0

− x

x− 1
λ′(x) + (x2 − x)µ′(x) = u(x)

⇔


λ′(x) + µ′(x)(x2 − 1) = 0

−λ′(x) + µ′(x)(x− 1)2 =
u(x)(x− 1)

x

⇔


λ′(x) = −µ′(x)(x2 − 1)

−λ′(x) + µ′(x)(x− 1)2 =
u(x)(x− 1)

x

⇔


λ′(x) = −µ′(x)(x2 − 1)

µ′(x)((x2 − 1)− (x− 1)2) =
u(x)(x− 1)

x

⇔


λ′(x) = −µ′(x)(x2 − 1)

µ′(x) =
u(x)

2x2

⇔


λ′(x) =

u(x)(1− x2)
2x2

µ′(x) =
u(x)

2x2

∀x ∈ I,


λ′(x) =

u(x)(1− x2)
2x2

µ′(x) =
u(x)

2x2

4. On applique la question précédente avec u : x 7→ x. On a :

∀x ∈ I,


λ′(x) =

(1− x2)
2x

=
1

2x
− x

2

µ′(x) =
1

2x

On peut choisir :

∀x ∈ I,


λ(x) =

1

2
ln(|x|)− x2

4

µ(x) =
1

2
ln(|x|)

D’après la question 3., une solution particulière de (E) sur I est :

x 7→
(1
2
ln(|x|)− x2

4

)
× 1

x− 1
+

1

2
ln(|x|)(x+ 1)
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On ajoute les solutions de l’équation homogène trouvées dans la partie B pour obtenir les solutions de (E) sur
I : {

x 7→
(1
2
ln(|x|)− x2

4

)
× 1

x− 1
+

1

2
ln(|x|)(x+ 1) +

λ

x− 1
+ µ(x+ 1), (λ, µ) ∈ R2

}


