Chapitre 4 : Fonctions usuelles

- 1-Soit $x \in \left[-\pi, -\frac{\pi}{2}\right]$, simplifier Arccos(cos(x)).
- 2-Donner toutes les valeurs remarquables de la fonction Arcsin.
- 3-Vrai ou faux : la fonction Arcsin est 2π -périodique car sin l'est.
- 4-Sur quel ensemble la fonction $f: x \mapsto \operatorname{Arcsin}(\sin(x))$ est-elle définie ? dérivable ? Calculer sa dérivée.
- 5-Pour $x \in \left[-\pi, -\frac{\pi}{2}\right]$, simplifier Arcsin(sin(x)).
- 6-Esquisser le graphe de $x \mapsto Arcsin(sin(x))$.
- 7- Donner une primitive sur un ensemble à préciser de $x\mapsto \frac{2}{3}\frac{e^{2x}}{\sqrt{1-e^{4x}}}$.

1-Soit
$$x \in \left[-\pi, -\frac{\pi}{2}\right]$$
, simplifier $Arccos(cos(x))$.

Réponse : Soit $x \in \left[-\pi, -\frac{\pi}{2}\right]$, on a $-x \in \left[\frac{\pi}{2}, \pi\right]$ et par parité de la fonction cosinus, on a :

$$Arccos(cos(x)) = Arccos(cos(-x)) = -x$$

2-Donner toutes les valeurs remarquables de la fonction Arcsin.

Réponse : D'après les valeurs connues de la fonction sin, on a :

X	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Arcsin(x)	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

3-Vrai ou faux : la fonction Arcsin est 2π -périodique car sin l'est.

Réponse : C'est faux, la fonction Arcsin est définie sur [-1,1] et cet ensemble n'est pas 2π -périodique.

4-Sur quel ensemble la fonction $f: x \mapsto \operatorname{Arcsin}(\sin(x))$ est-elle définie ? dérivable ? Calculer sa dérivée.

Réponse : • La fonction sin est définie sur \mathbb{R} et à valeurs dans [-1,1]. La fonction Arcsin est définie sur [-1,1], ainsi par composition f est définie sur \mathbb{R} .

• La fonction Arcsin est dérivable sur] -1,1[et $\sin(x)=\pm 1 \Leftrightarrow x=\frac{\pi}{2}[\pi].$ Ce qui permet d'affirmer que f est dérivable sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\right\}$ et :

$$f'(x) = \frac{\cos(x)}{\sqrt{1 - \sin^2(x)}} = \frac{\cos(x)}{\sqrt{\cos^2(x)}} = \frac{\cos(x)}{|\cos(x)|}$$

5-Pour
$$x \in \left[-\pi, -\frac{\pi}{2}\right]$$
, simplifier Arcsin(sin(x)).

Réponse : Soit
$$x \in \left[-\pi, -\frac{\pi}{2}\right]$$
, on a :

$$Arcsin(sin(x)) = Arcsin(-sin(x + \pi)) = -Arcsin(sin(x + \pi))$$

En utilisant l'imparité de la fonction Arcsin.

Pour finir le calcul, on remarque que pour $x \in \left[-\pi, -\frac{\pi}{2}\right]$, on a :

$$x + \pi \in \left[0, \frac{\pi}{2}\right]$$
 et pour tout $\alpha \in \left[0, \frac{\pi}{2}\right]$, Arcsin(sin(α)) = α .

Finalement:

$$\forall x \in \left[-\pi, -\frac{\pi}{2}\right], \ \operatorname{Arcsin}(\sin(x)) = -(x+\pi)$$

6-Esquisser le graphe de $x \mapsto Arcsin(sin(x))$.

Réponse : Cette fonction est 2π -périodique. On a vu que :

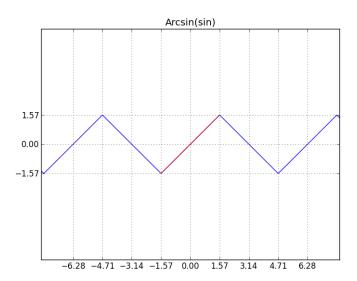
$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \ \operatorname{Arcsin}(\sin(x)) = x$$

$$\forall x \in \left[-\pi, -\frac{\pi}{2} \right], \ \operatorname{Arcsin}(\sin(x)) = -x - \pi$$

$$\forall x \in \left[\frac{\pi}{2}, \pi \right], \ \operatorname{Arcsin}(\sin(x)) = -x + \pi$$

Ce qui nous donne le graphique suivant :

Chapitre 4 : Fonctions usuelles



7- Donner une primitive sur un ensemble à préciser de $x \mapsto \frac{2}{3} \frac{e^{2x}}{\sqrt{1 - e^{4x}}}$.

Réponse : La fonction est définie sur \mathbb{R}_{-}^* afin que $1 - e^{4x} > 0$.

On reconnait une expression de la forme $u' \times \frac{1}{\sqrt{1-u^2}}$ avec u une fonction dérivable à valeurs dans]-1,1[. Ce type de fonction s'intègre en Arcsin(u). Plus précisément, ici $u:x\mapsto e^{2x}$ et en posant :

$$F: x \mapsto \frac{1}{3} \operatorname{Arcsin}(e^{2x})$$

on a F définie et dérivable sur \mathbb{R}_{-}^{*} et :

$$F': x \mapsto \frac{1}{3} \frac{2e^{2x}}{\sqrt{1 - (e^{2x})^2}} = \frac{2}{3} \frac{e^{2x}}{\sqrt{1 - e^{4x}}}$$