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D3 FFF Soit f ∈ C(R). On suppose que tout y ∈ R admet au plus 2 antécédents par f . Montrer qu’il existe
un réel qui admet un unique antécédent par f .

Pour suivre cette démonstration, il est conseillé de faire des dessins correspondants aux différents cas.

Corrigé. Toute application injective convient évidemment. Il reste à étudier le cas où f n’est pas injective, c’est-à-
dire que l’on considère (a, b) ∈ R2 tels que a < b et f(a) = f(b), notons y0 cette valeur commune. Comme l’application
f est continue, l’image par f d’un segment est un segment, il existe m < M deux réels tels que f([a, b]) = [m,M ] (m
et M sont distincts sinon f est constante sur [a, b] ce qui est exclu par hypothèse).

Si y0 n’est ni égal à m ni égal à M alors y0 ∈]m,M [. Par définition de m et M , il existe (c, d) ∈ [a, b]2 tels que
f(c) = m et f(d) = M . Comme f est continue d’après le théorème des valeurs intermédiaires, il existe x0 ∈]c, d[ tel
que f(x0) = y0. Ceci est absurde car y0 aurait alors trois antécédents distincts. Ceci montre que l’on a nécessairement
y0 = m ou y0 = M . Quitte à transformer la fonction f en −f , supposons que y0 = m. On va voir que dans ce cas M
admet d comme unique antécédent. Raisonnons par l’absurde en supposant que d′ 6= d est également un antécédent
de M et discutons de la position de d′ :
• Si d′ < a, d’après le théorème des valeurs intermédiaires, tout réel t ∈]m,M [ admet au moins trois antécédents :

un dans chacun des intervalles ]d′, a[, ]a, d[ et ]d, b[. Ceci est absurde.
• Si a < d′ < b. Supposons que d < d′, l’autre cas étant identique. D’après le théorème des valeurs intermédiaires,

il existe un réel t ∈]m,M [ admettant au moins trois antécédents : un dans chacun des intervalles ]a, d[ et ]d, d′[ et
]d′, b[. Ceci est absurde.
• Si d′ > b. D’après le théorème des valeurs intermédiaires, tout réel t ∈]d, d′[ admet au moins trois antécédents :

un dans chacun des intervalles ]a, d[ et ]d, b[ et ]b, d′[ Ceci est absurde.

On a démontré que M n’a qu’un seul antécédent par f

18 FF Soit f ∈ C([a, b]) avec f(a) 6= f(b) et (u, v) ∈ (R∗+)2. Montrer qu’il existe c ∈]a, b[ tel que :

uf(a) + vf(b) = (u+ v)f(c)

Corrigé. On suppose f(a) < f(b) par exemple, l’autre cas étant similaire. On pose :

g : x 7→ (u+ v)f(x)− uf(a)− vf(b)

Le but est de démontrer que g s’annule. La fonction g étant continue, il suffit de montrer que g prend une valeur
négative et une valeur positive. On a :

g(a) = v(f(a)− f(b)) < 0

g(b) = u(f(b)− f(a)) > 0

Ce qui permet de conclure.



MPSI2 Limites et continuité 2025-2026

23 FFF Soit f : R→ R uniformément continue, montrer qu’il existe (A,B) ∈ R2 tels que

∀x ∈ R, |f(x)| ≤ A|x|+B

On rappelle la définition de la continuité uniforme sur R de la fonction f :

∀ε > 0, ∃α > 0, ∀(x, y) ∈ R2, |x− y| ≤ α⇒ |f(x)− f(y)| ≤ ε

Prenons ε = 1, la définition fournit ainsi un α > 0 correspondant. Soit x ≥ 0, l’idée va être de joindre 0 à x à
l’aide d’une suite de points telle que la distance entre deux points consécutifs ne dépasse pas α afin de pouvoir utiliser
la définition de la continuité uniforme ci-dessus. Cette châıne de points est x0 = 0, x1 = α, x2 = 2α, ..., xn = nα avec

n ∈ N choisi tel que nα ≤ x < (n+ 1)α ; ceci est bien sûr possible avec n = E
(x
α

)
.

En faisant apparâıtre une somme télescopique et en utilisant l’inégalité triangulaire généralisée, on a :

|f(x)− f(0)| =
∣∣∣[f(x)− f(nα)] + [f(nα)− f((n− 1)α)] + ...+ [f(α)− f(0)]

∣∣∣
≤ |f(x)− f(nα)|+ |f(nα)− f((n− 1)α)|+ ...+ |f(α)− f(0)|
≤ (n+ 1)ε = n+ 1

La dernière égalité étant issue de la définition de l’uniforme continuité puisque :

|x− nα| ≤ α, |nα− (n− 1)α| ≤ α, ..., |α− 0| ≤ α

D’après l’inégalité triangulaire bis, on obtient :

|f(x)| − |f(0)| ≤ |f(x)− f(0)| ≤ (n+ 1)ε

C’est-à-dire que |f(x)| ≤ |f(0)|+ (n+ 1). Or n ≤ x

α
+ 1, on pose ainsi C =

1

α
et D = 2 + |f(0)| et on obtient :

∀x ≥ 0, |f(x)| ≤ C|x|+D

Par un raisonnement tout à fait similaire sur R−, on obtient l’existence de deux constantes réelles C ′ et D′ telles
que :

∀x ≤ 0, |f(x)| ≤ C ′|x|+D′

Il reste à poser A = max(C,C ′) et B = max(D,D′) pour avoir le résultat annoncé :

∀x ∈ R, |f(x)| ≤ A|x|+B
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D4 FFF Étudier la continuité de la fonction f définie sur R par :

f(x) =


cos(x) si x ∈ Q

1

2
si x ∈ R \Q

Corrigé : Soit A =
{π

3
+ 2kπ, −π

3
+ 2kπ, k ∈ Z

}
. On va démontrer que f est continue uniquement en tout

point de A.

• Soit x0 ∈ A. On a x0 ∈ R \Q donc f(x0) =
1

2
. On va utiliser la caractérisation séquentielle de la continuité. Soit

(un) une suite de réels qui tend vers x0. Si un ∈ Q, f(un) = cos(un) et si un ∈ R \ Q alors f(un) =
1

2
. Ce qui nous

donne lim
n→+∞

f(un) =
1

2
= f(x0). On en déduit que f est continue en x0.

• Soit x0 ∈ (R \Q) \A, on a f(x0) =
1

2
6= cos(x0). Par densité de Q dans R, il existe une suite de rationnels (un)

qui tend vers x0, on a alors :

f(un) = cos(un) −→
n→+∞

cos(x0) 6=
1

2
= f(x0)

La fonction f n’est pas continue en x0.

• Soit x0 ∈ Q, on a f(x0) = cos(x0) 6=
1

2
. Par densité de R \Q dans R, il existe une suite (un) d’irrationnels qui

tend vers x0, on a alors :

f(un) =
1

2
−→

n→+∞

1

2
6= f(x0)

Ainsi par caractérisation séquentielle de la continuité, on en déduit que f n’est pas continue en x0.

f est continue sur A


