- 1-Donner une primitive sur \mathbb{R}_+^* de $x \mapsto \sqrt{x}$ et de $x \mapsto \frac{1}{\sqrt{x}}$.
- 2-Donner une primitive sur \mathbb{R} de th² et de th.
- 3-Trouver une primitive de $f: x \mapsto \frac{2}{x^2 + x}$.
- 4-Vrai ou faux : une primitive sur $]-\infty,1[$ de $f:t\mapsto \frac{3}{t-1}$ est $F:t\mapsto 3\ln(3(1-t)).$
- 5-La fonction valeur absolue définie sur $\mathbb R$ est-elle la primitive d'une fonction ? admet-elle des primitives ?
- 6-Déterminer une primitive de $f: x \mapsto (6x+3)\sqrt{x^2+x+1}$.
- 7-Déterminer une primitive de $f: x \mapsto \frac{3}{1+9x^2}$.

4□ > 4□ > 4 = > 4 = > = 90

Chapitre 5 : Calculs de primitives et d'intégrales

AR5-1

1-Donner une primitive sur \mathbb{R}_+^* de $x\mapsto \sqrt{x}$ et de $x\mapsto \frac{1}{\sqrt{x}}$.

Réponse : • Une primitive sur \mathbb{R}_+ de la fonction $x \mapsto \sqrt{x} = x^{\frac{1}{2}}$ est $x \mapsto \frac{2}{3}x^{\frac{3}{2}}$.

• Une primitive sur \mathbb{R}_+^* de la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est $x \mapsto 2\sqrt{x}$.

2-Donner une primitive sur \mathbb{R} de th² et de th.

Réponse : • La dérivée sur \mathbb{R} de la fonction th est $1-\operatorname{th}^2$. Ainsi une primitive sur \mathbb{R} de $\operatorname{th}^2=1-(1-\operatorname{th}^2)$ est $x\mapsto x-\operatorname{th}(x)$.

• On a th $=\frac{\sinh}{\cosh}$, de la forme $\frac{u'}{u}$. Une primitive est donc ln(ch) définie sur \mathbb{R} .

4 D > 4 B > 4 E > 4 E > 9 9 9

Chapitre 5 : Calculs de primitives et d'intégrales

3-En précisant l'ensemble de définition, trouver une primitive de

$$f: x \mapsto \frac{2}{x^2 + x}$$
.

Réponse : Pour $x \in \mathbb{R} \setminus \{-1, 0\}$, on a :

$$\frac{2}{x^2 + x} = \frac{2}{x(x+1)} = \frac{2 + 2x - 2x}{x(x+1)} = \frac{2 + 2x}{x(x+1)} - \frac{2x}{x(x+1)} = \frac{2}{x} - \frac{2}{x+1}$$

Une primitive sur $\mathbb{R} \setminus \{-1,0\}$ est :

$$F: x \mapsto 2\ln(|x|) - 2\ln(|x+1|) = \ln\left(\frac{x^2}{(x+1)^2}\right)$$

4-Vrai ou faux : une primitive sur $]-\infty,1[$ de $f:t\mapsto \frac{3}{t-1}$ est $F:t\mapsto 3\ln(3(1-t))$.

Réponse : C'est vrai car pour tout $t \in]-\infty,1[$, on a :

$$F(t) = 3\ln(3) + 3\ln(1-t)$$

La fonction $t\mapsto 3\ln(1-t)$ est bien une primitive de f sur $]-\infty,1[$ et $3\ln(3)$ est une constante.

5-La fonction valeur absolue définie sur $\mathbb R$ est-elle la primitive d'une fonction? admet-elle des primitives?

Réponse : • La fonction valeur absolue ne peut pas être une primitive sur \mathbb{R} car elle n'est pas dérivable en 0.

ullet Par contre, la fonction valeur absolue est continue sur $\mathbb R$, ce qui suffit à affirmer qu'elle admet des primitives sur $\mathbb R$. Plus précisément, la fonction suivante est une primitive sur $\mathbb R$ de la fonction valeur absolue :

$$F : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{1}{2}x^2 & \text{si } x \ge 0 \\ -\frac{1}{2}x^2 & \text{si } x < 0 \end{cases}$$

6-Déterminer une primitive de $f: x \mapsto (6x+3)\sqrt{x^2+x+1}$

Réponse : $f: x \mapsto (6x+3)\sqrt{x^2+x+1}$ est définie sur $\mathbb R$ car le discriminant du trinôme sous la racine carrée est strictement négatif. Pour tout $x \in \mathbb R$, on a :

$$f(x) = 3(2x+1)\sqrt{x^2 + x + 1}$$

C'est de la forme $u'u^{\frac{1}{2}}$ avec $u(x) = x^2 + x + 1$.

$$F: x \mapsto 2(x^2 + x + 1)^{\frac{3}{2}}$$
 définie sur \mathbb{R}

7/8

- 7-Déterminer une primitive de $f: x \mapsto \frac{3}{1+9x^2}$.
- **Réponse :** $f: x \mapsto \frac{3}{1+9x^2}$ est définie sur \mathbb{R} . On reconnaît la forme $\frac{u'}{1+u^2}$ avec u(x)=3x.

 $F: x \mapsto \operatorname{Arctan}(3x)$ définie sur \mathbb{R}