
MPSI2 DM12 Mathématiques Pour le jeudi 5 janvier

Théorème de Fermat de Noël

Le but de ce problème est d’étudier la question posée et résolue par Pierre de Fermat : ”quels sont les nombres
entiers pouvant s’écrire comme somme de deux carrés d’entiers naturels ?”

Dans tout ce problème dire que l’entier naturel n est somme de deux carrés d’entiers naturels signifie :

∃(x, y) ∈ N2, n = x2 + y2

A-Préliminaires

1. Donner une décomposition de chaque entier entre 0 et 18 comme somme de deux carrés d’entiers naturels lorsque
cela vous semble possible.

2. À l’aide d’un tableau de congruences, montrer qu’aucun entier congru à 3 modulo 4 n’est somme de deux carrés
d’entiers naturels.

3. On note P3,4 l’ensemble des nombres premiers congrus à 3 modulo 4. Le but de cette question est de montrer
que P3,4 est infini. On raisonne par l’absurde en supposant que P3,4 est fini et s’écrit P3,4 = {pi, i ∈ J1, nK} où
n ∈ N∗.

(a) Justifier qu’un produit d’un nombre quelconque d’entiers naturels congrus à 1 modulo 4 est congru à 1
modulo 4.

(b) On pose M =
(

4
n∏

i=1

pi

)
− 1.

i. Montrer que M n’est pas premier.

ii. Montrer que M possède au moins un diviseur premier congru à 3 modulo 4.

iii. Conclure.

Remarque : Plus généralement, si a et b sont deux entiers naturels non nuls et si on note Pa,b l’ensemble des
nombres premiers congrus à a modulo b alors le théorème de la progression arithmétique de Dirichlet affirme
que :

Pa,b est infini si et seulement si a et b sont premiers entre eux

Ce théorème est très difficile à démontrer car la méthode vue pour P3,4 ne se généralise pas. Ce résultat n’in-
tervient pas dans la suite du problème.

4. Soit p un nombre premier et a ∈ J1, p− 1K, montrer qu’il existe un unique u ∈ J1, p− 1K tel que au ≡ 1 [p].

On notera dans toute la suite cet inverse a−1.

5. En reprenant les notations de la question précédente, montrer qu’il existe un unique t ∈ J1, p − 1K tel que
a+ t ≡ 0 [p].

On notera dans toute la suite cet opposé −a.

Remarque : Les deux questions précédentes permettent de justifier que l’ensemble J0, p− 1K muni de l’addition
et de la multiplication modulo p est un corps. On le note usuellement Z/pZ.
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B-Une équation modulaire

Le but de ce paragraphe est de démontrer le lemme suivant :

Lemme 1 : L’équation s2 ≡ −1 [p] d’inconnue s possède :
• Deux solutions appartenant à J1, p− 1K lorsque p est premier congru à 1 modulo 4.
• Aucune solution si p est premier congru à 3 modulo 4.
• Une unique solution appartenant à J1, p− 1K si p = 2.

1. Démontrer le cas p = 2.

2. Soit p un nombre premier impair. On considère la relation binaire définie pour tous (x, y) ∈ J1, p− 1K2 par :

xRy ⇔ x = y ou x = −y ou x = y−1 ou x = −y−1

Les notations −x et x−1 sont celles introduites dans la partie A.

(a) Montrer que R est une relation d’équivalence.

(b) Soit x ∈ J1, p− 1K. Justifier que la classe de x est Cl(x) = {x,−x, x−1,−x−1}.
(c) Donner les classes d’équivalence dans le cas où p = 11 puis dans le cas où p = 13.

3. Dans cette question, on cherche à préciser les cas où certains éléments de la classe de x sont égaux :

(a) Montrer que x = −x est impossible.

(b) Montrer que x = x−1 équivaut à x = 1 ou x = p− 1.

(c) Montrer que x = −x−1 possède 0 ou 2 solutions.

(d) En déduire que l’ensemble J1, p− 1K est partitionné par les classes d’équivalence de la relation R en sous-
ensembles ayant 4 éléments et un ou deux sous-ensembles ayant 2 éléments.

4. En déduire le lemme annoncé.

C-Nombres premiers somme de deux carrés

Le but de ce paragraphe est de démontrer le lemme suivant :

Lemme 2 : Tout nombre premier congru à 1 modulo 4 est somme de deux carrés d’entiers naturels.

Soit p un nombre premier congru à 1 modulo 4. On note dans ce paragraphe Γ = J0, E(
√
p)K où E désigne la

partie entière.

1. On pose γ =Card (Γ2). Donner γ et montrer que γ > p.

2. Soit s ∈ Z fixé.

(a) Montrer qu’il existe deux couples disctincts (x, y) et (x′, y′) de Γ2 tels que x− sy ≡ x′ − sy′ [p].

(b) On pose x̂ = |x− x′| et ŷ = |y − y′|. Montrer que (x̂, ŷ) ∈ Γ2 et que x̂ ≡ εsŷ [p] avec ε ∈ {−1, 1}.

3. En choisissant s de façon à utiliser le lemme 1, montrer que x̂2 + ŷ2 = p.

4. En déduire les nombres premiers qui sont somme de deux carrés d’entiers naturels.
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D-Entiers somme de deux carrés

Nous allons dans cette partie démontrer le théorème suivant qui apporte la réponse au problème initial.

Théorème : Un entier naturel n ≥ 2 peut s’écrire comme somme de deux carrés d’entiers naturels si et seulement
si tous les facteurs premiers congrus à 3 modulo 4 dans la décomposition de n en facteurs premiers apparaissent
à une puissance paire.

1. Montrer que si m = x2 + y2 et n = t2 + u2 avec m,n, x, y, t et u des entiers naturels, alors mn est également
somme de deux carrés. On trouvera cette écriture explicitement grâce à une factorisation astucieuse.

2. Montrer que si n ∈ N est somme de deux carrés alors nz2 où z ∈ N est également somme de deux carrés.

3. Montrer que si tous les facteurs premiers congrus à 3 modulo 4 dans la décomposition de n en facteurs premiers
apparaissent à une puissance paire alors n s’écrit comme somme de deux carrés d’entiers naturels.

4. Montrons à présent la réciproque du théorème. Soit n = x2 + y2 avec n ≥ 2 et (x, y) ∈ N2. Notons p un diviseur
premier de n congru à 3 modulo 4.

(a) Montrer que l’hypothèse x 6≡ 0 [p] est contradictoire avec le lemme 1, on pourra utiliser x−1.

(b) En déduire que p2 divise n.

(c) Montrer que
n

p2
est également somme de deux carrés d’entiers naturels.

(d) Conclure quant à la réciproque du théorème annoncé.

5. Voici une application du théorème : on note (pk)k≥1 la liste des nombres premiers impairs donnés dans l’ordre

croissant. En considérant Mk =
( k∏

i=1

pi

)2
+ 22, montrer qu’il y a une infinité de nombres premiers congrus à 1

modulo 4.

6. Montrer qu’un entier congru à 7 modulo 8 ne peut être la somme de trois carrés d’entiers naturels.

Remarques : Un théorème dû à Lagrange assure que tout entier naturel est somme de 4 carrés d’entiers naturels.

E-Une dernière surprise

À l’aide de Python, déterminer le nombre moyen de décompositions d’un entier naturel n comme somme de deux
carrés d’entiers relatifs pour n allant de 0 à 100000. Que peut-on conjecturer ? On fournira une impression des
fonctions Python servant à répondre à cette question ou on enverra le programme par mail.

Vous pouvez bien sûr tenter de démontrer votre conjecture mais c’est facultatif pour ce devoir.
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Théorème de Lagrange (pas de Noël)

Le but du problème est de démontrer le théorème de Lagrange et d’en étudier une application. Il s’énonce de la
façon suivante :

Soit G un groupe fini et H un sous-groupe de G. Le cardinal de H divise le cardinal de G.

A-Démonstration du théorème

On considère G un groupe fini de cardinal n ∈ N∗, on note e son élement neutre et on considère H un sous-groupe
de G. On définit une relation binaire R sur G par :

∀(x, y) ∈ G2, xRy ⇔ x−1y ∈ H

1. Montrer que R est une relation d’équivalence.

2. (a) Rappeler la définition de la classe d’équivalence d’un élément a ∈ G, pour la relation binaire R. On note
Cl(a) la classe de a.

(b) Montrer que ∀a ∈ G, on a : Cl(a) = {ax, x ∈ H}.

3. Pour tout a ∈ G, on considère l’application :
γa : H → {ax, x ∈ H}

x 7→ ax

(a) Montrer que γa est bien définie et que c’est une bijection.

(b) En déduire que : ∀a ∈ G, Card(Cl(a)) =Card(H).

4. En déduire le théorème annoncé.

5. On suppose que le cardinal du groupe G est un nombre premier. Décrire les sous-groupes de G.

B-Une application du théorème

Soit G un groupe fini de cardinal n ∈ N∗.

1. Soit a ∈ G, on considère l’application :
ϕa : N → G

n 7→ an

(a) Justifier que ϕa n’est pas injective.

(b) En déduire qu’il existe k ∈ N∗ tel que ak = e.

(c) Si a ∈ G, on définit l’ordre de a de la façon suivante : Ord(a) = min{k ∈ N∗, ak = e}.
Justifier que le minimum considéré dans la définition de Ord(a) existe.

2. (a) Soit a ∈ G, démontrer que Ha = {ak, 0 ≤ k ≤ Ord(a)− 1} est un sous-groupe de G.

(b) En déduire que Ord(a) est un diviseur de n.

3. Montrer que : ∀a ∈ G, an = e.

4. Montrer qu’un groupe de cardinal premier est commutatif.


