
MPSI2 DS1 ITC corrigé ITC

Exercice

1. L’égalité sert à affecter une valeur à une variable et la double égalité sert à tester si deux
variables sont égales.

1 >>>a = 3 # a prend la valeur 3
2 >>>a
3 3
4 >>>a == 4 # renvoie un booléen : True ou False
5 False

2. On a les deux techniques suivantes :

1 >>>import math as m
2 >>>m.sqrt(5)
3 2.23606797749979
4 >>>5 ∗∗ (1 / 2)
5 2.23606797749979

3. Cela renvoie True. En effet 3.2 ! = 3 est vrai et 7 % 3 == 1 est vrai aussi car le reste de
la division euclidienne de 7 par 3 vaut 1.

4. On a par exemple :

1 >>>L = [2, 4, 6]
2 >>>L[−1]
3 6
4 >>>L[len(L) − 1]
5 6

5. (a) Avec une boucle for :

1 L = []
2 for i in range(1, 1000):
3 if i % 2 == 1: # test de l’imparité de i
4 L.append(i)

(b) Avec une boucle while :

1 M = []
2 i = 1
3 while i < 1000:
4 M.append(i)
5 i = i + 2

(c) Avec une liste en compréhension :

1 N = [2 ∗ i + 1 for i in range(500)]

2025-2026

MPSI2 DS1 ITC corrigé ITC

6. Lors du premier passage dans la boucle la commande return stoppe l’exécution de la fonction
et la valeur 0 est renvoyée.

7. La liste L vaut [0, 1, 2]. Pour chaque valeur de i entre 0 et 2 toutes les valeurs de j entre
0 et 2 sont parcourues, ce qui donne :

1 00
2 01
3 02
4 10
5 11
6 12
7 20
8 21
9 22

8. Voici les résultats, il faut juste suivre pas à pas les différentes conditions selon les valeurs
de n :

1 >>>[test2(k) for k in range(10)]
2 [0, 0, 2, 3, 4, 3, 3, 6, 7, 8]

9. Voici une fonction réalisant ceci. Si la liste est vide, on ne rentre pas dans la boucle et le
programme renvoie 1, ce qui est cohérent car le produit vide vaut 1.

1 def mul(L):
2 ”””renvoie le produit des éléments de la liste L”””
3 p = 1
4 for i in range(len(L)):
5 p = p ∗ L[i]
6 return(p)

10. Cela renvoie une erreur car a est une variable locale qui n’existe qu’au sein de la fonction
tandis que l’affichage se fait en dehors de la fonction :

1 NameError: name ’a’ is not defined

11. On a :

1 >>>L = [4, 8]
2 >>>L.append(6)
3 >>>L
4 [4, 8, 6]
5 >>>L + [5]
6 [4, 8, 6, 5]

12. Voici une fonction à l’aide d’une boucle for :

1 def rev(ch):
2 ”””écrit la chaine de caractères dans l ’autre sens”””
3 ch2 = ”” # la nouvelle chaine de caractère , vide initialement
4 for i in range(0, len(ch)) :
5 ch2 = ch2 + ch[len(ch) − i − 1] # on ajoute les éléments en partant de la fin
6 return(ch2)

2025-2026

MPSI2 DS1 ITC corrigé ITC

13. Pour cette question, je vous renvoie au chapitre 1.

14. Nous avons vu cette fonction classique en exercice dans le chapitre 1 :

1 def comptage(L):
2 ”””fonction qui renvoie un dictionnaire permettant de connaitre le nombre d’occurrences des éléments

de la liste L”””
3 d = {} # création d’un dictionnaire vide
4 for i in L:
5 if i in d:
6 d[i] += 1 # si l’élément est déjà une clé , on ajoute 1
7 else :
8 d[i] = 1 # sinon on crée l’ entrée correspondante dans le dictionnaire
9 return(d)

15. On reprend l’algorithme déjà étudié :

1 def tri bulles (L):
2 ”””ordonne la liste L dans l ’ordre croissant en utilisant le tri bulle”””
3 n =len(L) # la longueur de la liste
4 trier = False # cette variable prend la valeur True lorsque l ’on fait un parcours sans échange
5 while trier == False:
6 trier = True # pour l’instant, on n’a pas fait d’échange
7 for i in range(n − 1): # on parcourt la liste
8 if L[i] > L[i + 1]:
9 L[i], L[i +1] = L[i + 1], L[i] # on échange les paires mal rangées

10 trier = False # on indique que la liste n’est pas triée car on a fait un échange
11 return(L) # quand on sort de la boucle, la liste est triée

D’après le cours, on sait que la complexité du tri bulle est O(n2) où n est la longueur de la
liste.

16. Voici cette fonction classique :

1 def mini(L):
2 ”””renvoie le minimum et un indice de ce minimum”””
3 if L == []:
4 return(None) # si la liste est vide, on ne renvoie rien
5 else :
6 indice = 0
7 mini = L[0] # initialisation de l ’ indice et du minimum
8 n = len(L)
9 for i in range(1, n):

10 a = L[i]
11 if a < mini: # si l ’on trouve un élément plus petit , c’ est le nouveau minimum
12 indice = i
13 mini = a
14 return((mini, indice))

17. On utilise, par exemple, les fonctions qui existent dans le module numpy :

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 X = np.linspace(8, 11, 10000)
5 Y = np.sqrt(X) + X ∗∗ 2 + 1
6 plt .plot(X, Y)
7 plt .show()

2025-2026

MPSI2 DS1 ITC corrigé ITC

18. Voici une fonction qui réalise ceci :

1 import random as rd
2

3 def mel(L):
4 ”””melange la liste L”””
5 M = [] #la nouvelle liste
6 while L != []:
7 i = rd.randint(0, len(L) − 1) #choix d’un indice au hasard
8 M.append(L[i]) #on ajoute l’élément à M
9 L.pop(i) # on le supprime dans L

10 return(M)

Problème

1. (a) On propose la fonction suivante :

1 def minmax(L):
2 ”””renvoie la taille minimale et la taille maximale”””
3 tmax = 0 # initialisation des variables taille max et taille min
4 tmin = 3000
5 for i in L: # on parcourt les éléments de la liste
6 if i > tmax:
7 tmax = i
8 if i < tmin:
9 tmin=i

10 return((tmin,tmax))

(b) On propose la fonction suivante :

1 def moy(L):
2 ”””renvoie la moyenne des valeurs de la liste L”””
3 S = 0
4 for i in L:
5 S = S + i # on somme les éléments de la liste
6 return(S / len(L))

(c) On propose la fonction suivante :

1 def sup(L, t) :
2 ”””renvoie le nombre d’éléments de la liste L supérieurs à t”””
3 nb = 0
4 for i in L:
5 if i > t:
6 nb = nb + 1 # si l’on trouve plus grand que t, on incrémente le compteur
7 return(nb)

(d) On utilise ici deux boucles imbriquées :

1 def idem(L):
2 ”””teste si deux éléments de L sont identiques”””
3 for i in range(len(L)):
4 for j in range(i + 1, len(L)): # on commence à i+1 pour ne pas prendre deux fois le même

élément
5 if L[i] == L[j]:
6 return(True) # ce return stoppe la fonction
7 return(False)

2025-2026

MPSI2 DS1 ITC corrigé ITC

(e) La fonction set permet de transformer la liste L en ensemble, c’est-à-dire que les
doublons sont éliminés. Le test set(L) == len(L) permet par conséquent de savoir si
la liste L ne contient pas d’élément en double. Finalement, cette fonction renvoie True
si deux personnes ont la même taille, False sinon.

2. (a) On propose la fonction suivante :

1 def pivot(L, i) :
2 ”””renvoie le nombre d’éléments inférieurs et supérieurs à celui d’ indice i”””
3 a = 0
4 b = 0
5 p = L[i] # pour ne pas le recalculer à chaque fois
6 for j in range(len(L)):
7 if L[j] < p:
8 a = a + 1
9 elif L[j] > p:

10 b = b + 1
11 # quand j = i, a et b ne seront pas incrémentés
12 return((a, b))

(b) La médiane est l’élément de la liste se trouvant exactement au milieu. La liste étant
de longueur impaire, il n’y a pas d’ambiguité.

1 def mediane(L):
2 ”””renvoie la médiane de la liste L qui est de longueur 49”””
3 for i in range(49):
4 a, b = pivot(L, i)
5 if a == 24: # lorsque a = 24 et donc b = 24, on a la médiane
6 return(L[i])

La fonction pivot réalise au maximum 2n comparaisons. En effet, chaque passage dans
la boucle for donne lieu à une ou deux comparaisons. La fonction médiane fait appel
au maximum n fois à la fonction pivot et réalise aussi n comparaisons en testant si a
vaut 24. Ainsi, il y a au maximum 2n2 + n comparaisons. La complexité est en O(n2).

(c) Afin de trouver la médiane, on peut aussi envisager de trier la liste, avec un tri bulle
par exemple, et prendre l’élément L[24].

2025-2026

MPSI2 DS1 ITC corrigé ITC

3. On commence par trier la liste afin de la partager ensuite comme demandé. Pour la trier,
on peut utiliser un tri bulle.

1 def tri bulles (L):
2 ”””ordonne la liste L dans l ’ordre croissant en utilisant le tri bulle”””
3 n =len(L)
4 trier = False
5 while trier == False:
6 trier = True
7 for i in range(n − 1):
8 if L[i] > L[i + 1]:
9 L[i], L[i +1] = L[i + 1], L[i]

10 trier = False
11 return(L)
12

13 def partage(L):
14 ”””partage la liste L en trois sous−listes selon l ’ordre croissant en utilisant le tri bulle”””
15 L = tri bulles (L)
16 L1 = []
17 L2 = []
18 L3 = []
19 for i in range(49): # la liste est triée , il s ’ agit juste de placer chaque tier dans L1, L2 ou L3
20 if i < 16:
21 L1.append(L[i])
22 elif i > 32:
23 L3.append(L[i])
24 else :
25 L2.append(L[i])
26 return(L1, L2, L3)

4. (a) De façon classique :

1 def Ltailles (d):
2 ”””renvoie la liste des tailles qui sont les valeurs du dictionnaire d”””
3 Lt = []
4 for i in d: # on parcourt les clés
5 Lt.append(d[i])
6 return(Lt)

(b) On propose la fonction suivante :

1 def Lnoms(d):
2 ”””renvoie la liste des noms qui sont les clés du dictionnaire”””
3 Lnoms = []
4 for i in d:
5 Lnoms.append(i)
6 return(Lnoms)

2025-2026

MPSI2 DS1 ITC corrigé ITC

(c) On utilise notamment la fonction partage de la question 3.

1 def tiers (d):
2 ”””partage la classe en trois tiers selon la taille ”””
3 Lt = Ltailles (d) # on récupère la liste des tailles
4 L1, L2, L3 = partage(Lt) # on partage les tailles en trois tiers
5 N1, N2, N3 = [], [], []
6 for i in d: # on regarde dans quelle liste mettre le nom selon sa taille
7 if d[i] in L1:
8 N1.append(i)
9 elif d[i] in L2:

10 N2.append(i)
11 else :
12 N3.append(i)
13 return((N1, N2, N3))

(d) On utilise la fonction tiers précédente :

1 def queltiers (d, nom):
2 ”””renvoie le tiers d’appartenance de l’étudiant”””
3 N1, N2, N3 = tiers(d)
4 if nom in N1:
5 return(1)
6 elif nom in N2:
7 return(2)
8 else :
9 return(3)

(e) Il manque les guillemets autour de BELLON − WANG pour avoir une chaine de
caractères comme précisé dans l’énoncé...

2025-2026

