MPSI2 DS1 ITC corrigé ITC

FExercice

1. L’égalité sert a affecter une valeur a une variable et la double égalité sert a tester si deux
variables sont égales.

1 >>>a = 3 # a prend la valeur 3

2 >>>a

3 3

4 >>>a == 4 # renvoie un booléen : True ou False
5 False

2. On a les deux techniques suivantes :

>>>import math as m
>>>m.sqrt(5)
2.23606797749979
>>>5 % (1/2)
2.23606797749979

gk W N =

3. Cela renvoie True. En effet 3.2 ! = 3 est vraiet 7 % 3 == 1 est vrai aussi car le reste de
la division euclidienne de 7 par 3 vaut 1.

4. On a par exemple :
1 >>>L = (2, 4, 6]

2 >>>L[-1]

3 6

4 >>>L[len(L) — 1]
5 6

5. (a) Avec une boucle for :

L=
for i in range(1, 1000):
if i % 2 == 1: # test de I'imparité de i
L.append(i)

=W oo

(b) Avec une boucle while :

M=

i=1

while i < 1000:
M.append(i)
i=1i42

gk W N =

(c¢) Avec une liste en compréhension :

1 N=[2x%1i+1for i in range(500)]

2025-2026

MPSI2 DS1 ITC corrigé ITC

© 00 9 O s W N =

S

o o

10.

11.

D Uk W N =

12.

(2B N

Lors du premier passage dans la boucle la commande return stoppe I’exécution de la fonction
et la valeur 0 est renvoyée.

La liste L vaut [0, 1, 2]. Pour chaque valeur de i entre 0 et 2 toutes les valeurs de j entre
0 et 2 sont parcourues, ce qui donne :

00
01
02
10
11
12
20
21
22

Voici les résultats, il faut juste suivre pas a pas les différentes conditions selon les valeurs
de n :

>>>[test2(k) for k in range(10)]
[0, 0, 2, 3, 4, 3, 3, 6, 7, §

Voici une fonction réalisant ceci. Si la liste est vide, on ne rentre pas dans la boucle et le
programme renvoie 1, ce qui est cohérent car le produit vide vaut 1.

def mul(L):
?77renvoie le produit des éléments de la liste L”””
p=1
for i in range(len(L)):
P = p * Li]
return(p)

Cela renvoie une erreur car a est une variable locale qui n’existe qu’au sein de la fonction
tandis que l'affichage se fait en dehors de la fonction :

NameError: name 'a’ is not defined

On a:

>>>L = [4, §]
>>>L.append(6)
>>>L

[4, 8, 6]

>>>L + [5)]

[4, 8, 6, 5]

Voici une fonction a ’aide d’une boucle for :

def rev(ch):
777 écrit la chaine de caracteres dans 1’autre sens
ch2 =77 # la nouvelle chaine de caractere, vide initialement
for i in range(0, len(ch)):
ch2 = ch2 + chllen(ch) — i — 1] # on ajoute les éléments en partant de la fin
return(ch2)

999399

2025-2026

MPSI2 DS1 ITC corrigé ITC

13.
14.

—_
ot © 00 N9 O Ok W

© 0 N o s W N =

=
— o

—_
(=)

© 00 9 O R W N

e e e
W N = O

17.

N o A W N

Pour cette question, je vous renvoie au chapitre 1.

Nous avons vu cette fonction classique en exercice dans le chapitre 1 :

def comptage(L):
77" fonction qui renvoie un dictionnaire permettant de connaitre le nombre d’occurrences des éléments
de la liste L”7”

d = {} # création d’un dictionnaire vide

for i in L:
if iin d:
d[i] += 1 # si I'élément est déja une clé, on ajoute 1
else :
d[i] = 1 # sinon on crée I’entrée correspondante dans le dictionnaire
return(d)

. On reprend l'algorithme déja étudié :

def tri-bulles (L):
?””ordonne la liste L dans 1’ordre croissant en utilisant le tri bulle
n =len(L) # la longueur de la liste
trier = False # cette variable prend la valeur True lorsque 1’on fait un parcours sans échange
while trier == False:
trier = True # pour l'instant, on n’a pas fait d’échange
for i in range(n — 1): # on parcourt la liste
if L[i] > L[i + 1]
L[i], L[i +1] =L[i + 1], L[i] # on échange les paires mal rangées
trier = False # on indique que la liste n’est pas triée car on a fait un échange
return(L) # quand on sort de la boucle, la liste est triée

979999

D’apres le cours, on sait que la complexité du tri bulle est O(n2) ou n est la longueur de la
liste.

. Voici cette fonction classique :

def mini(L):
?7”renvoie le minimum et un indice de ce minimum
if L==1:
return(None) # si la liste est vide, on ne renvoie rien
else :
indice = 0
mini = L[0] # initialisation de 1’indice et du minimum
n = len(L)
for i in range(1, n):
a = L[]
if a < mini: # si 1’on trouve un élément plus petit, c¢’est le nouveau minimum
indice =i
mini = a
return ((mini, indice))

99939

On utilise, par exemple, les fonctions qui existent dans le module numpy :

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(8, 11, 10000)
Y = np.sqrt(X) + X #x 2 + 1
plt.plot (X, Y)

plt .show()

2025-2026

MPSI2

DS1 ITC corrigé ITC

18. Voici une fonction qui réalise ceci :

© 0 N O R W N

Jun
o

1.

import random as rd

def mel(L):

99999

melange la liste L”””

M = [] #la nouvelle liste

while L != []:
i = rd.randint(0, len(L) — 1) #choix d’un indice au hasard
M.append(L[i]) #on ajoute I’élément & M
L.pop(i) # on le supprime dans L

return (M)

(a)

=W N =

© 0 9 O »

10

(b)

=N O R W N = D U s W N =

=W N

ot

Probléme

On propose la fonction suivante :

def minmax(L):
?””renvoie la taille minimale et la taille maximale
tmax = 0 # initialisation des variables taille max et taille min
tmin = 3000
for i in L: # on parcourt les éléments de la liste
if i > tmax:
tmax =i
if i < tmin:
tmin=i
return ((tmin,tmax))

CERIE})

On propose la fonction suivante :

def moy(L):
?77renvoie la moyenne des valeurs de la liste L”””
S=0
for i in L:
S =S + i # on somme les éléments de la liste
return(S / len(L))

On propose la fonction suivante :

def sup(L, t):
?”?renvoie le nombre d’éléments de la liste L supérieurs a t”””
nb =0
for i in L:
if 1>t
nb = nb + 1 # si 'on trouve plus grand que t, on incrémente le compteur
return(nb)

On utilise ici deux boucles imbriquées :

def idem(L):
777teste si deux éléments de L sont identiques
for i in range(len(L)):
for j in range(i + 1, len(L)): # on commence & i+1 pour ne pas prendre deux fois le méme

97979

élément
if L[i] == L[j]:
return(True) # ce return stoppe la fonction
return(False)

2025-2026

MPSI2 DS1 ITC corrigé ITC

(e) La fonction set permet de transformer la liste L en ensemble, c’est-a-dire que les
doublons sont éliminés. Le test set(L) == len(L) permet par conséquent de savoir si
la liste L ne contient pas d’élément en double. Finalement, cette fonction renvoie True
si deux personnes ont la méme taille, False sinon.

2. (a) On propose la fonction suivante :

1 def pivot(L, i):

2 ?77renvoie le nombre d’éléments inférieurs et supérieurs a celui d’indice i”””
3 a=0

4 b=20

5 p = L[i] # pour ne pas le recalculer & chaque fois

6 for j in range(len(L)):

7 if L[j] < p:

8 a=a+1

9 elif L[j] > p:

10 b=b+1

quand j = i, a et b ne seront pas incrémentés
return((a, b))

= e
N

(b) La médiane est 1’élément de la liste se trouvant exactement au milieu. La liste étant
de longueur impaire, il n’y a pas d’ambiguité.

def mediane(L):
?7”renvoie la médiane de la liste L qui est de longueur 49”””
for i in range(49):
a, b = pivot(L, 1)
if a == 24: # lorsque a = 24 et donc b = 24, on a la médiane
return(L[i])

S gR W N =

La fonction pivot réalise au maximum 2n comparaisons. En effet, chaque passage dans
la boucle for donne lieu a une ou deux comparaisons. La fonction médiane fait appel
au maximum 7 fois & la fonction pivot et réalise aussi n comparaisons en testant si a
vaut 24. Ainsi, il y a au maximum 2n% 4+ n comparaisons. La complexité est en O(n?).

(c) Afin de trouver la médiane, on peut aussi envisager de trier la liste, avec un tri bulle
par exemple, et prendre ’élément L[24].

2025-2026

MPSI2

DS1 ITC corrigé ITC

3. On commence par trier la liste afin de la partager ensuite comme demandé. Pour la trier,
on peut utiliser un tri bulle.

© 00 g D O s W N

NN N NN NN R e e e s s e
S R W N R O © N0 ;A W N = O

def tri_bulles (L):

99999 97979

ordonne la liste L dans 1’ordre croissant en utilisant le tri bulle
n =len(L)
trier = False
while trier == False:
trier = True
for i in range(n — 1):
if L[i] > L[i + 1]
L[i], L[i +1] = L[i + 1], L[i]
trier = False
return(L)

def partage(L):

99999 97999

partage la liste L en trois sous—listes selon 1’ordre croissant en utilisant le tri bulle
L = tri_bulles (L)
L1 =]
L2 =]
L3 =]
for i in range(49): # la liste est triée, il s’agit juste de placer chaque tier dans L1, L2 ou L3
if i <16:
L1.append(L[i])
elif i > 32:
L3.append(L][i])
else :
L2.append(L[i])
return(L1, L2, L3)

(a) De fagon classique :

S s W N =

def Ltailles (d):
?77renvoie la liste des tailles qui sont les valeurs du dictionnaire d”””
Lt =
for i in d: # on parcourt les clés
Lt.append(d[i])
return(Lt)

(b) On propose la fonction suivante :

o Ut R W N =

def Lnoms(d):
?7”renvoie la liste des noms qui sont les clés du dictionnaire”””
Lnoms = ||
for i in d:
Lnoms.append (i)
return(Lnoms)

2025-2026

MPSI2 DS1 ITC corrigé ITC

(c) On utilise notamment la fonction partage de la question 3.

1 def tiers (d):

2 ???partage la classe en trois tiers selon la taille 7””

3 Lt = Ltailles(d) # on récupere la liste des tailles

4 L1, L2, L3 = partage(Lt) # on partage les tailles en trois tiers
5 N1, N2, N3 =1, [|, [

6 for i in d: # on regarde dans quelle liste mettre le nom selon sa taille
7 if d[i] in L1:

8 N1l.append(i)

9 elif d[i] in L2:

10 N2.append (i)

11 else :

12 N3.append(i)

13 return((N1, N2, N3))

(d) On utilise la fonction tiers précédente :

def queltiers (d, nom):
?77renvoie le tiers d’appartenance de 1’étudiant”””
N1, N2, N3 = tiers(d)
if nom in N1:
return(1)
elif nom in N2:
return(2)
else :
return(3)

© 0 N Ok W N

(e) Il manque les guillemets autour de BELLON — WANG pour avoir une chaine de
caracteres comme précisé dans 1’énoncé...

2025-2026

