
MPSI2 Colle 16 (Dérivation) 2025-2026

1 ⋆ Pour n ∈ N∗ calculer la dérivée n-ième des fonctions suivantes :

1. f : t 7→ cos(t)3

2. g : t 7→ tn−1 ln(t)

3. h : t 7→ 1

1− t2

Corrigé :

1. La fonction f est définie sur R et est de classe C∞ sur R. On commence par linéariser cos(t)3 avec la méthode vue dans
le chapitre 1. On obtient :

∀t ∈ R, cos(t)3 =
1

4
cos(3t) +

3

4
cos(t)

Soit n ∈ N, on dérive n fois pour obtenir :

∀t ∈ R, f (n)(t) =
3n

4
cos

(
3t+ n

π

2

)
+

3

4
cos

(
t+ n

π

2

)
2. La fonction g est de classe C∞ sur R∗

+. On applique la formule de Leibniz avec u : t 7→ tn−1 et v : t 7→ ln(t) qui sont de
classe C∞ sur R. Pour t ∈ R∗

+, on a :

g(n)(t) =

n∑
k=0

(
n

k

)
u(k)(t)v(n−k)(t)

=

n−1∑
k=0

(
n

k

)
(n− 1)!

(n− 1− k)!
tn−1−k (−1)n−k−1(n− k − 1)!

tn−k
+ 0× ln(t)

=

n−1∑
k=0

(
n

k

)
(−1)n−k−1 (n− 1)!

t

=
(n− 1)!

t

n∑
k=0

(
n

k

)
(−1)n−k−1 − (−1)−1

=
(n− 1)!

t

(
−

n∑
k=0

(
n

k

)
(−1)n−k + 1

)

=
(n− 1)!

t
((1− 1)n + 1)

=
(n− 1)!

t

∀t ∈ R∗
+, g(n)(t) =

(n− 1)!

t

Les dérivées successives de u et v se calculent en intuitant une formule que l’on démontre par récurrence.

On ne pouvait pas raisonner simplement par récurrence car la fonction que l’on dérive change entre les rangs n et
n+ 1.

3. Pour t ∈ R \ {−1, 1}, on a :
1

1− t2
=

1

2

1

1− t
+

1

2

1

1 + t

Ainsi :

∀n ∈ N, ∀t ∈ R \ {−1, 1}, h(n)(t) =
1

2

n!

(1− t)n+1
+

1

2

(−1)nn!

(1 + t)n+1

1
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2 ⋆⋆ Soit f : R → R dérivable en 0. On suppose qu’il existe α ∈]0, 1[ tel que :

∀x ∈ R, f(αx) = αf(x)

Démontrer que f est linéaire.

Corrigé : Soit x ∈ R∗ et n ∈ N, on a :

f(αn+1x)

αn+1x
=

αf(αnx)

αn+1x
=

f(αnx)

αnx

Ainsi la suite
(f(αnx)

αnx

)
est constante, elle converge vers son premier terme qui est

f(x)

x
.

D’autre part, on remarque que f(0) = f(α× 0) = αf(0) ainsi f(0) = 0 puisque α ̸= 1. On a :

f(x)

x
=

f(x)− f(0)

x− 0
−→
x→0

f ′(0)

Ainsi par composition des limites, puisque lim
n→+∞

αnx = 0, on obtient :

lim
n→+∞

f(αnx)

αnx
= f ′(0)

Par unicité de la limite, pour tout x ∈ R∗, on a :

f(x)

x
= f ′(0) ⇔ f(x) = f ′(0)x

Cette égalité demeure pour x = 0, on en déduit que f est linéaire.

f est linéaire

3 ⋆⋆ Soient (a, b) ∈ R2 avec 0 < a < b et f : [a, b] → R dérivable telle que f(a) = f(b) = 0. Montrer qu’il existe un
point de la courbe représentative de f où la tangente passe par l’origine.

Corrigé : Analysons le problème. On cherche c ∈ [a, b] tel que la tangente à la courbe représentative de f passe par
l’origine. Cette équation a pour tangente y = f ′(c)(x−c)+f(c). Elle passe par l’origine si et seulement si −cf ′(c)+f(c) = 0.

Cela fait penser à la dérivée d’un quotient car si on pose g : x 7→ f(x)

x
qui est définie sur [a, b], on a : g′(c) =

cf ′(c)− f(c)

c2
.

On est ramené à démontrer que g′ s’annule, pour cela on va appliquer le théorème de Rolle.

• g est continue sur [a, b] car f l’est.

• g est dérivable sur ]a, b[ car f l’est.

• g(a) = g(b) = 0 car f(a) = f(b) = 0

D’après le théorème de Rolle, il existe c ∈]a, b[ tel que g′(c) = 0, c’est-à-dire cf ′(c)− f(c) = 0 ce qui est le résultat voulu
d’après l’analyse que nous avons faite.
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4 ⋆ Soit f ∈ C1(R) telle que :

∀x ∈ R, (f ◦ f)(x) = x

2

1. Montrer que pour tout x ∈ R, f
(x
2

)
=

f(x)

2
.

2. En déduire que pour tout x ∈ R, f ′(x) = f ′
(x
2

)
.

3. En déduire l’ensemble des fonctions f de classe C1 sur R vérifiant la condition de l’énoncé.

Corrigé :

1. Soit x ∈ R par associativité de la composition, on a :

f
(x
2

)
= f((f ◦ f)(x)) = (f ◦ f)(f(x)) = f(x)

2

2. On dérive la relation précédente, f étant de classe C1 sur R pour obtenir :

∀x ∈ R,
1

2
f ′
(x
2

)
=

f ′(x)

2

On en déduit que pour tout x ∈ R, f ′(x) = f ′
(x
2

)
.

3. Par une récurrence immédiate, on en déduit que :

∀n ∈ N, ∀x ∈ R, f ′(x) = f ′
( x

2n

)
Il est possible de passer à la limite quand n tend vers +∞ dans la relation précédente car f ′ est continue sur R. On
obtient :

∀x ∈ R, f ′(x) = f ′(0)

Étant donné que f ′ est constante, on en déduit que f est affine.

Il s’agit à présent de faire la synthèse. Soit f : x 7→ ax+ b avec (a, b) ∈ R2. Soit x ∈ R, on a :

f ◦ f(x) = a(ax+ b) + b = a2x+ ab+ b

Ainsi la relation est vraie si et seulement si a2x+ ab+ b =
x

2
. Cette égalité est vraie pour tout x ∈ R si et seulement

si : 
a2 =

1

2

ab+ b = 0

⇔


a = ± 1√

2

b = 0

Les seules fonctions qui conviennent sont les fonctions x 7→ ± x√
2
qui sont bien de classe C1 sur R

5 Déterminer (a, b, c) ∈ R3 afin que la fonction suivante soit dérivable sur R.

f : R → R

x 7→


4x si x ≤ 0
ax2 + bx+ c si 0 < x < 1
3− 2x si x ≥ 1

Corrigé : Analyse. On suppose que f est dérivable sur R. Tout d’abord f doit être continue sur R, on doit avoir
lim

x→0−
f(x) = lim

x→0+
f(x) et lim

x→1−
f(x) = lim

x→1+
f(x), ce qui impose c = 0 et a+ b = 1.

3
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D’autre part, on forme le taux d’accroissement de f en 0, pour x < 0 :

f(x)− f(0)

x− 0
= 4 −→

x→0−
4

et pour x > 0 :

f(x)− f(0)

x− 0
= ax+ b −→

x→0+
b

Comme f est dérivable en 0, on a : b = 4. De même, en examinant la dérivabilité en 1, on a a = −3.

Synthèse. Pour a = −3, b = 4 et c = 0, on vérifie que f est dérivable sur R.

6 ⋆⋆⋆ Soit f : [0, 1] → R une fonction continue et dérivable sur [0, 1] telle que f(0) = 0 et pour tout x ∈]0, 1[,
f(x) > 0. Montrer que :

∃c ∈]0, 1[, 2f ′(c)

f(c)
=

f ′(1− c)

f(1− c)

Corrigé : On considère la fonction g : x 7→ f(x)2f(1−x) continue et dérivable sur [0, 1] car f l’est. On a g(0) = g(1) = 0
car f(0) = 0. D’après le théorème de Rolle, il existe c ∈]0, 1[ tel que g′(c) = 0. On a :

g′(c) = 2f ′(c)f(c)f(1− c)− f(c)2f ′(1− c) = 0 ⇔ 2f ′(c)

f(c)
=

f ′(1− c)

f(1− c)

en remarquant que f(c) > 0 et f(1− c) > 0 par hypothèse.

7 ⋆⋆⋆ Soit f :]0, 1] → R dérivable. On suppose que lim
x→0

f(x) = l et lim
x→0

xf ′(x) = l′ avec (l, l′) ∈ R2. Démontrer que

l′ = 0.

Corrigé : Supposons par l’absurde que l′ > 0, le cas l′ < 0 étant identique. Par définition de la limite, il existe ε > 0
et il existe un voisinage de 0 de la forme ]0, α] avec α > 0 sur lequel xf ′(x) ≥ ε. Prenons x > 0 tel que [x, 2x] ⊂]0, α], on va
appliquer le théorème des accroissements finis à la fonction f sur [x, 2x]. Les hypothèses sont vérifiées puisque f est dérivable
sur ]0, 1], il existe cx ∈]x, 2x[ tel que :

f ′(cx) =
f(2x)− f(x)

2x− x
=

f(2x)− f(x)

x

Or cxf
′(cx) ≥ ε, on en déduit que :

f(2x)− f(x) ≥ x
ε

cx
≥ ε

2

En passant à la limite quand x tend vers 0, on obtient : 0 = l − l ≥ ε

2
, ce qui est absurde. On en déduit que l′ = 0.

l′ = 0

8 ⋆⋆⋆ Soit n ≥ 2 et (fi)1≤i≤n des fonctions continues et dérivables sur [a, b]. On suppose que f1(a) = fn(b) = 0 et
que pour tout x ∈]a, b[, pour tout i ∈ J1, nK, fi(x) ̸= 0. Démontrer qu’il existe c ∈]a, b[ tel que :

n∑
i=1

f ′
i(c)

fi(c)
= 0

Corrigé : On pose f : x 7→
n∏

i=1

fi(x) définie sur [a, b]. La fonction f est continue et dérivable sur [a, b], de plus

4
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f(a) = f(b) = 0 car f1(a) = fn(b) = 0. D’après le théorème de Rolle, il existe c ∈]a, b[ tel que f ′(c) = 0. Or :

f ′(c) =

n∑
i=1

f ′
i(c)

n∏
j=1
j ̸=i

fj(c) = f(c)

n∑
i=1

f ′
i(c)

fi(c)

Comme fi(c) ̸= 0 par hypothèse puisque c ∈]a, b[, on en déduit que :

n∑
i=1

f ′
i(c)

fi(c)
= 0.

9 ⋆⋆ Soit f : x 7→
√
xArcsin(x).

1. Donner l’ensemble de définition de f .

2. Étudier la dérivabilité de f .

Corrigé :
1. La fonction Arcsin est définie sur [−1, 1]. De plus, d’après nos connaissances sur la fonction Arcsin, on sait que Arcsin(x)

est du signe de x. Ainsi pour tout x ∈ [−1, 1], xArcsin(x) ≥ 0. La fonction f est définie sur [−1, 1].

2. La fonction
√

est dérivable sur R∗
+ et Arcsin est dérivable sur ]−1, 1[, par composition f est dérivable sur ]−1, 1[\{0}.

• Étude en 0. Pour x ∈ [−1, 1] \ {0}, on forme le taux de variation de f en 0 :

f(x)− f(0)

x− 0
=

√
xArcsin(x)

x
=

√
x2

√
Arcsin(x)

x

x
=

|x|
x

√
Arcsin(x)

x

Or

lim
x→0

Arcsin(x)

x
= Arcsin′(0) =

1√
1− 02

= 1

On en déduit que lim
x→0+

f(x)− f(0)

x− 0
= 1 et lim

x→0−

f(x)− f(0)

x− 0
= −1.

La fonction f n’est pas dérivable en 0.

• Étude en 1. Ici, nous allons appliquer le théorème de la limite de la dérivée. La fonction f est continue sur [0, 1] et
dérivable sur ]0, 1[, pour x ∈]0, 1[, on a :

f ′(x) =
(
Arcsin(x) +

x√
1− x2

) 1

2
√

xArcsin(x)

Ce n’est pas une forme indéterminée et nous obtenons lim
x→1

f ′(x) = +∞. D’après le théorème de la limite de la dérivée,

on en déduit que f n’est pas dérivable en 1.

• L’étude en −1 est identique car la fonction est paire.

10 Soit f : R → R une fonction dérivable. Montrer que si f ′ ne s’annule pas alors f n’est pas périodique.

Corrigé : On démontre la contraposée en utilisant le théorème de de Rolle. On suppose que f est T -périodique avec
T > 0. En particulier, on a f(T ) = f(0), la fonction f étant continue et dérivable sur R, on en déduit que f ′ s’annule sur
]0, T [.

11 ⋆ Soient (a, b) ∈ R2 et n ≥ 2. Montrer que le polynôme P = Xn + aX + b admet au plus 3 racines réelles.

Corrigé : On note f : x 7→ xn+ax+b la fonction polynomiale associée à P . Par l’absurde, on se donne a1 < a2 < a3 < a4
quatre réels qui sont racines de P . La fonction f est de classe C∞ sur R, nous pouvons appliquer le corollaire du théorème
de Rolle à f et à ses dérivées.

On a f(a1) = f(a2), f(a2) = f(a3) et f(a3) = f(a4), on en déduit qu’il existe (b1, b2, b3) ∈]a1, a2[×]a2, a3[×]a3, a4[ tels
que f ′(b1) = f ′(b2) = f ′(b3) = 0.

5
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De même, il existe (c1, c2) ∈]b1, b2[×]b2, b3[ tels que f ′′(c1) = f ′′(c2) = 0.

Or f ′′ : x 7→ n(n− 1)xn−2 ne s’annule pas si n = 2 et s’annule uniquement en 0 si n ≥ 3, d’où l’absurdité.

f admet au plus 3 racines réelles

12 ⋆⋆ Soit f : [0, 1] → R dérivable telle que f(0) = 1 et f(1) = e. Démontrer qu’il existe c ∈]0, 1[ tel que f(c) = f ′(c).

Corrigé : On pose g : x 7→ f(x)e−x qui est continue et dérivable sur [0, 1] car f est continue et dérivable sur [0, 1].
On a g(0) = f(0) = 1 et g(1) = f(1)e−1 = 1. D’après le théorème de Rolle, la fonction g′ s’annule, c’est-à-dire qu’il existe
c ∈]0, 1[ tel que g′(c) = 0. Or :

g′ : x 7→ f ′(x)e−x − f(x)e−x = (f ′(x)− f(x))e−x

On en déduit que g′(c) = 0 implique que f(c) = f ′(c) comme demandé.

13 ⋆⋆ Déterminer, si elle existe, la limite suivante :

lim
x→+∞

x3
(
sh
( 1

x2

)
− sh

( 1

(x+ 1)2

))

Corrigé : On pose f : t 7→ sh
( 1

t2

)
définie sur R∗ et on se donne x > 0. On va appliquer le théorème des accroissements

finis à la fonction f sur l’intervalle [x, x + 1]. La fonction f est continue et dérivable sur [x, x + 1] car sh est continue et
dérivable sur R. On en déduit l’existence de cx ∈]x, x+ 1[ tel que :

f ′(cx) =
f(x+ 1)− f(x)

x+ 1− x
= f(x+ 1)− f(x)

Or f ′ : t 7→ − 2

t3
ch
( 1

t2

)
, ainsi la relation devient :

2

c3x
ch
( 1

c2x

)
= sh

( 1

x2

)
− sh

( 1

(x+ 1)2

)
On multiplie par x3 pour obtenir :

2x3

c3x
ch
( 1

c2x

)
= x3

(
sh
( 1

x2

)
− sh

( 1

(x+ 1)2

))
Il reste à passer à la limite quand x tend vers +∞. On a cx ∈]x, x+ 1[ donc :

2x3

(x+ 1)3
≤ 2x3

c3x
≤ 2x3

x3

D’après le théorème d’encadrement, on obtient lim
x→+∞

2x3

c3x
= 2. D’autre part lim

x→+∞
cx = +∞ car cx ≥ x donc lim

x→+∞
ch
( 1

c2x

)
=

lim
y→0

ch(y) = 1.

Finalement :

lim
x→+∞

x3
(
sh
( 1

x2

)
− sh

( 1

(x+ 1)2

))
= 2

14 ⋆ Soit f : R → R définie par f(x) =
1

1 + x2
. Démontrer que f est lipschitzienne.

Corrigé : Déjà la fonction f est dérivable sur R. D’après le cours, cela revient à démontrer que f ′ est bornée sur R.
On a f ′ : x 7→ −2x

(1 + x2)2
.

6
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Or pour tout x ∈ R, on a (x− 1)2 ≥ 0 ⇔ −1 ≤ −2x

1 + x2
et par suite −1 ≤ −2x

(1 + x2)2
puisque 1 + x2 ≥ 1.

De même, on a pour tout x ∈ R, (x+ 1)2 ≥ 0 ⇔ 1 ≥ −2x

1 + x2
donc 1 ≥ −2x

(1 + x2)2
.

Finalement |f ′| ≤ 1 et par suite f est 1-lipschitzienne.
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