
MPSI2 DM11 Corrigé

1. (a) On sait que 1, j et j2 sont les trois racines cubiques de l’unité. Or dès que n ≥ 2, la somme des racines
n-ièmes de l’unité vaut 0.

1 + j + j2 = 0

On a :
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(b) L’existence d’une telle écriture est donnée par la définition de Z[j], il reste à démontrer l’unicité. On
suppose que :

z = a+ bj = c+ dj avec (a, b, c, d) ∈ Z4

En utilisant l’écriture algébrique de j donnée dans la question précédente, il vient :
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On identifie les parties imaginaires pour obtenir : b = d puis on identifie les parties réelles pour avoir a = c.
Ce qui démontre l’unicité de l’écriture.

L’écriture d’un élément de Z[j] est unique

2. Nous allons démontrer que (Z[j],+,×) est un anneau en démontrant plutôt que c’est un sous-anneau de
(C,+,×). Vérifions les différentes conditions requises.

• Déjà Z[j] ⊂ C.

• 0 ∈ Z[j] car 0 = 0 + 0i.

• Soient z = a+ bj et z′ = c+ dj avec (a, b, c, d) ∈ Z4. On a :

z + z′ = a+ bj + c+ dj = (a+ c)︸ ︷︷ ︸
∈Z

+ (b+ d)︸ ︷︷ ︸
∈Z

j

donc z + z′ ∈ Z[j].

• Soit z = a+ bj avec (a, b) ∈ Z2, on a :

−z = −(a+ bj) = −a︸︷︷︸
∈Z

+ (−b)︸︷︷︸
∈Z

j

donc −z ∈ Z[j].

• 1 = 1 + 0j ∈ Z[j].

• Soient z = a + bj et z′ = c + dj avec (a, b, c, d) ∈ Z4. En utilisant la relation 1 + j + j2 = 0, c’est-à-dire
j2 = −j − 1, on a :

z × z′ = (a+ bj)× (c+ dj) = ac+ (ad+ bc)j + bdj2 = ac+ (ad+ bc)j + bd(−1− j) = ac− bd︸ ︷︷ ︸
∈Z

+ (ad+ bc− bd)︸ ︷︷ ︸
∈Z

j

donc z × z′ ∈ Z[j].

Enfin la mutiplication des nombres complexes est évidemment commutative, on en déduit que :

(Z[j],+,×) est un anneau commutatif en tant que sous-anneau de (C,+,×)
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3. (a) Soit z = a+ bj avec (a, b) ∈ Z2. On a :

N(z) = |z|2 = zz̄ = (a+ bj)(a+ bj̄) = a2 + 2ab(j + j̄) + b2jj̄ = a2 − ab+ b2 ∈ Z

car j+ j̄ = j+ j2 = −1 et jj̄ = j× j2 = j3 = 1. Or le module d’un nombre complexe est un nombre positif
donc :

N(z) ∈ N

(b) On procède par double implication.

(⇒) On suppose que z est un inversible de Z[j], cela signifie qu’il existe z′ ∈ Z[j] tel que zz′ = 1. On note
z = a+ bj et z′ = c+ dj avec (a, b, c, d) ∈ Z4, on a :

N(zz′) = |zz′|2 = |z|2|z′|2 = N(z)N(z′)

Ainsi N(z)N(z′) = N(zz′) = N(1) = |1|2 = 1. Or N(z) et N(z′) sont deux entiers naturels d’après la
question précédente donc N(z) = 1.

(⇐) Réciproquement, on suppose que N(z) = 1, on a :

N(z) = |z2| = zz̄ = (a+ bj)(a+ bj̄) = (a+ bj)(a+ bj2) = (a+ bj)(a− b− bj) = 1

Ainsi z est inversible et son inverse est a− b︸ ︷︷ ︸
∈Z

+ (−b)︸︷︷︸
∈Z

j.

z est inversible si et seulement si N(z) = 1

(c) D’après la question (b), chercher les inversibles de Z[j] revient à déterminer les éléments de module 1. Soit
z = a+ bj avec (a, b) ∈ Z2. En utilisant le calcul de la question (a), on a :

N(z) = 1⇔ a2 − ab+ b2 = 1⇔ a2 − ab+ b2 − 1 = 0

On fixe b ∈ Z, on obtient alors une équation de degré 2 en a. Le discriminant vaut ∆ = b2−4(b2−1) = 4−3b2.
Plusieurs cas sont à considérer :

• Si |b| ≥ 2, l’équation n’a pas de solution réelle car le discriminant est négatif.

• Si |b| = 1 alors si b = 1 l’équation a pour solution a = 0 et a = 1 et si b = −1 l’équation a pour solution
a = −1 et a = 0. Ce qui nous donne les inversibles : j, −j, −1− j et 1 + j.

• Si |b| = 0, c’est-à-dire b = 0, on a : a = 1 et a = −1. Ce qui nous donne les inversibles 1 et −1.

Z[j]× = {1,−1, j,−j, 1 + j,−1− j}

Donnons les inverses :
1× 1 = 1

(−1)× (−1) = 1

j × (−1− j) = j × j2 = j3 = 1

−j × (1 + j) = 1

(d) L’anneau Z[j] n’est pas un corps car tous les éléments non nuls ne sont pas inversibles comme nous l’avons
vu dans la question précédente.


