D Gt W N

Ut R W N =

MPSI2 Cours 6 : Fonctions récursives ITC

e Les algorithmes proposés dans les chapitres précédents sont itératifs, cela signifie qu’ils
sont congus a l'aide de boucles for ou while. Ce chapitre présente une autre maniere d’écrire
un algorithme avec la notion de récursivité. La récursivité est une notion fondamentale en
informatique théorique et en programmation qui a la réputation d’étre difficile, déroutante et
mystérieuse.

Définition : Un algorithme récursif est un algorithme récursif.

e Cette définition illustre bien le concept de récursivité, une fonction récursive est une
fonction qui fait appel a elle-méme. D’ailleurs, comme I’a dit Stephen Hawking :

”To understand recursion, one must first understand recursion.”

e Les objectifs de ce chapitre sont les suivants :

» savoir écrire un algorithme récursif et comprendre son fonctionnement,

» étre capable de transformer un programme récursif en programme itératif et réciproquement,

» étudier la validité et la complexité d’une fonction récursive.

1 Généralités et premiers exemples

1.1 Calcul de la factorielle d’un entier
1.1.1 Version itérative

e On va présenter ici 'exemple le plus classique pour appréhender la notion de récursivité. On
rappelle 'algorithme itératif suivant qui renvoie n!.

def factl(n):
77?renvoie n! ou n est un entier naturel”””
p=1
for i in range(l, n + 1):
p=p*i
return(p)

e Cette fonction se comprend bien, elle se base sur la formule suivante :
nl=1x2x.x(n—-1)xn

On remarque que si n = 0 alors on ne rentre pas dans la boucle et la fonction renvoie bien 1
conformément a la convention 0! = 1. On sait également que la complexité de cet algorithme, en
terme de nombre de multiplications, est linéaire.

1.1.2 Version récursive

e Voici un algorithme récursif qui réalise également le calcul de n!.

def fact2(n):
”7?renvoie n! ou n est un entier naturel”””
if n==0:
return(1)
else:
return(n * fact2(n — 1))

2025-2026



e oW N e

© 0w N 9«

10
11
12
13

MPSI2 Cours 6 : Fonctions récursives ITC

e Cette fonction se comprend trés bien puisqu’elle fait appel a la définition mathématique
suivante de la factorielle :

ol=1
Vn e N*, nl=nx (n—1)!

e Par exemple lorsque 1'on fait appel a fact2(3), la fonction fait appel & fact2(2) qui fait
appel & fact2(1) et qui fait appel a fact2(0). Cette derniere fonction renvoie 1 et les différents
produits s’effectuent pour renvoyer n!. Cette fonction fait appel a elle-méme, c’est la particularité
de la récusivité.

e Nous verrons que pour de tres nombreux problemes mathématiques, il est naturel d’utiliser
une fonction récursive.

1.2 Principes généraux

L’exemple précédent permet de mettre en évidence quelques principes concernant I’'implémentation

d’une fonction récursive.

e Une fonction récursive doit contenir une ou plusieurs conditions d’arrét, sinon
le programme peut boucler indéfiniment. Dans ’exemple de la fonction fact2, c’est la condition
if n == 0 qui assure l'arrét de la fonction. Plus précisément, la suite des valeurs de n passées
en parametre est une suite strictement décroissante d’entiers naturels, nous allons donc atteindre
la condition d’arrét (c’est-a-dire la valeur n = 0) en un nombre fini d’étapes.

e Par contre, si 'on essaie fact2(—2), l'algorithme ne se termine pas puisqu’il y a aura les
appels successifs : fact2(—3), fact2(—4), fact2(—5)...et 'on ne tombera jamais sur la condition
d’arrét. Toutefois, il y a un mécanisme de sécurité en Python qui limite le nombre d’appels
récursifs. Par défaut cette limite est de 'ordre du millier et s’il y a un dépassement, un message
d’erreur sera affiché :

>>> fact2(1200) # on teste avec n=1200
Traceback (most recent call last):
File 7 <console>", line 1, in <module>
File ”<tmp 1>", line 13, in fact2
return(n * fact2(n — 1))
File ”<tmp 1>", line 13, in fact2
return(n * fact2(n — 1))
File ”<tmp 1>7, line 13, in fact2
return(n * fact2(n — 1))
[Previous line repeated 984 more times]
File ”<tmp 1>", line 10, in fact2
if n==0:
RecursionError: maximum recursion depth exceeded in comparison

e Il est toutefois possible de modifier le nombre maximal d’appels récursifs avec les instructions
suivantes :

import sys # un module qui gere certains parametres du systeme
sys. setrecursionlimit (5000) # la limite est fixée a 5000

e Dans certains environnements 1'usage de la récursivité n’est pas permis, c’est le cas dans le
secteur des logiciels embarqués dans les véhicules terrestres ou aériens ou encore dans les standards
de codage de la NASA (c’est la regle 1 des 10 regles fondamentales de codage de la NASA).

En effet, une erreur dans ce type de contexte pourrait avoir des conséquences importantes.

2025-2026



D Gt W N =

MPSI2 Cours 6 : Fonctions récursives ITC

e Les valeurs passées en parametre dans les différents appels récursifs doivent
étre différentes, sinon la fonction s’exécute a chaque appel de fagon identique et continue de
s’exécuter indéfiniment. Par exemple, il est évident qu’il est inutile d’implémenter la fonction
suivante :

def test(n):
return(test (n))

1.3 Pile de récursivité

e Il existe deux structures linéaires courantes en informatique : les files et les piles. Dans
une file, c’est le premier arrivé qui est le premier sorti, on peut penser a une file d’attente dans
une boulangerie. Dans une pile, c’est le dernier arrivé qui est le premier sorti, on peut penser a
une pile de livres posée sur une table : c’est le livre posé en dernier, sur le dessus de la pile, qui
sera pris en premier. C’est ce mécanisme de pile qui se retrouve dans la plupart des fonctions
récursives.

e Voici précisément ce qu’il se passe lorsque l'on fait appel a fact2(3) :

Les différents appels sont empilés par ordre décroissant de n puis dépilés en partant du
dernier.

e Lors de I'appel & fact2(n), la multiplication n x fact2(n — 1) est mise en attente puisque
la valeur de fact2(n — 1) n’est pas connue. La mémoire de la machine est donc sollicitée pour
stocker les informations en attente. On peut contourner cela en stockant les informations dans un
parametre supplémentaire, appelé un accumulateur, cela permet de doter la fonction d’un peu de
mémoire. Voila ce que cela donnerait pour la fonction factorielle :

def fact3(n, acc):
77?renvoie n! en conservant les résultats au fur et & mesure
if n > 0:
return(fact3(n — 1, acc * n))
else:
return(acc)

99999

e Cette fonction renvoie la valeur de acc % n! ainsi fact3(n,1) renvoie n!. Il n’y a aucune
opération en attente hormis les appels récursifs.

2025-2026



D Gt W N

D Gt W N

MPSI2 Cours 6 : Fonctions récursives ITC

2 Complexité d’une fonction récursive

2.1 Quelques exemples

e La plupart du temps, la complexité d’une fonction récursive se détermine a 1’aide d’une
relation de récurrence. On reprend ’exemple fondamental de la factorielle :

def fact2(n):
77?renvoie n! ou n est un entier naturel”””
if n==0:
return(1)
else :
return(n * fact2(n — 1))

On note T'(n) le nombre d’opérations effectuées lors de 'appel de fact2(n). A chaque appel,
on a deux opérations élémentaires effectuées : le test n == 0 et la multiplication. On en déduit
la relation de récurrence :

{ T00)=1

Vn>1, T(n)=T(n—1)+2

C’est une suite arithmétique, on en déduit que pour tout n € N, T'(n) = 14 2n. La complexité
est linéaire.

e Voici un autre exemple :

def test(n):
”7”une fonction pas tres utile”””
if n==0:
return ([])
else :
return ([test (n — 1), test(n — 1), test(n — 1)])
On note également 7'(n), le nombre d’opérations effectuées lors de I’appel de test(n). On a
T(0) = 1 ce qui correspond au test n == 0 et pour n > 1, T'(n) = 3T (n — 1) + 1 puisque 'on
fait 3 fois appel a test(n — 1) et que l'on effectue une fois le test n == 0. On a :

T(0) = 1
{ Vn>1, T(n)=3T(n—-1)+1

C’est une suite arithmético-géométrique, on en déduit que :

n+1_1
VneN, T(n)= 3T

La complexité est en O(3"), c’est une complexité exponentielle.

2.2 L’exemple de suite de Fibonacci

e La suite de Fibonacci étant elle-méme définie par récurrence, son calcul semble bien se préter
a une implémentation récursive. On rappelle la définition de la suite de Fibonacci :

Fo=0et F} =1
VTLEN, Fn+2:Fn+1+Fn

Voici un algorithme récursif qui renvoie les termes de la suite de Fibonacci, c¢’est un algorithme
trés naturel car il traduit simplement la formule de calcul :

2025-2026



D U s W N =

© 0 N O U R W N =

=
= o

MPSI2 Cours 6 : Fonctions récursives ITC

def fib (n):
7?”renvoie le n—ieme terme de la suite de Fibonacci
if n==0o0orn==
return(n)
else :
return(fib (n — 1) + fib(n — 2))

27979

e En faisant quelques tests, il apparait que pour des valeurs supérieures a 30, le calcul devient
lent. En effet, & chaque étape le nombre d’appels récursifs est quasiment multiplié par 2, voici ce
qu’il se passe si I'on calcule fib(5) :

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

/\
N : -
fib{%m fib(t) fiboy (1) fib(0)

P
fib(1)  £ib(0)

e On se rend compte que notre algorithme souffre d’'un probléeme de mémoire, il passe son
temps a calculer des valeurs qu’il a déja calculées mais qu’il n’a pas mémorisées. On peut pallier
cela en créant un dictionnaire avec les valeurs déja calculées, tout en conservant le caractere
récursif de I'algorithme :

memoire = {} # création du dictionnaire vide
def fib2(n):
77?renvoie le n—ieme terme de la suite de Fibonacci en sauvegardant les valeurs calculées”””
if n in memoire: # si c’est une valeur déja calculée
return(memoire[n])
if n==0o0orn==
v =n
else :
v = fib2(n — 1) + fib2(n — 2)
memoire[n] = v # on sauvegarde la nouvelle valeur pour les prochains appels
return(v)

e [’algorithme est alors considérablement plus rapide mais nous n’évitons pas le probleme de
limitation du nombre maximal d’appels récursifs par rapport a ’algorithme de Fibonacci itératif.

e Grace a cet exemple, nous garderons en téte qu’il faut faire attention a ’explosion du nombre
d’appels récursifs.

2025-2026



© 0w N U R W N

© 00 9 O g W N =

= e
N o= O

MPSI2 Cours 6 : Fonctions récursives ITC

3 Retour sur quelques algorithmes classiques

3.1 Exponentiation rapide

e On rappelle le principe de I’exponentiation rapide pour calculer " ou n € N et x est un

flottant.
2" = (2F)? si n est pair avec n = 2k
2" = 2 x (%)% si n est impair avec n = 2k + 1

Cela nous permet d’écrire directement 1’algorithme récursif suivant :

def expo(x, n):
777 exponentiation rapide récursive”””

if n==0:
return(1)
else :
if n%2==0:
return(expo(x *x 2, n // 2)) # cas de ’exposant pair
else :

return(x * expo(x *x 2, n // 2)) # cas de 1’exposant impair

e Cet algorithme est plus simple a comprendre que sa version itérative. On peut démontrer
que la complexité ne change pas, elle est en O(log(n)).

3.2 Recherche dans une liste triée

e [’algorithme de recherche d’un élément dans une liste triée a lui aussi sa version récursive :

def recherche_dico_rec (L, x):
77”Renvoie True si 1’élément x se trouve dans la liste triée L et False sinon”””

if L==1[:
return(False)
else:
m = len(L) // 2 #le milieu de la liste
if x == L[m]: # cas ou I’élément est au milieu
return(True)
elif x > Lim]:
return(recherche_dico_rec (L[m + 1:], x)) # moitié droite de la liste
else:

return( recherche_dico_rec (L[:m], x) # moitié gauche de la liste

e La complexité est toujours en O(log(n)).

2025-2026



D Gt W N =

N O O W=

MPSI2 Cours 6 : Fonctions récursives ITC

4 Validité d’un algorithme récursif

e Nous avons vu que la terminaison d’un algorithme récursif est lié a la condition d’arrét qui
doit figurer dans l’algorithme. La correction d’un algorithme récursif se démontre par récurrence.
A titre d’exemple, justifions la correction de l'algorithme donnant la factorielle d’un entier que
I’on rappelle ici :

def fact2(n):
777 n est un entier positif”””
if n==0:
return(1)
else :
return(n * fact2(n — 1))

On considere la propriété suivante :
P, : 7 la fonction fact2(n) renvoie n!”

» Py est vraie puisque c’est la condition d’arrét.

» Supposons que la propriété P, soit vraie pour un entier naturel n fixé. La fonction
fact2(n + 1) renvoie (n + 1) x fact2(n). Or fact2(n) vaut n! par hypothese de récurrence
donc fact2(n+ 1) renvoie bien (n+ 1) x n! = (n+1)!. On en déduit que P, ;1 est vraie ce qui
termine la récurrence.

» D’apres le principe de récurrence, la propriété est démontrée et la correction de ’algorithme
est assurée.

e Les fonctions récursives qui illustrent ce cours se comprennent relativement bien mais ce
n’est pas toujours le cas. On termine ce cours en mentionnant la célebre fonction d’Ackermann :

def ack(m, n):
if m==
return(n + 1)
elif m > 0 and n == 0:
return(ack(m — 1, 1))
else :
return(ack(m — 1, ack(m, n — 1)))

e Comprendre ce que renvoie la fonction et démontrer sa validité est déja beaucoup moins
aisé. Le calcul de ack(4,4) met les ordinateurs a rude épreuve.

2025-2026



