
MPSI2 Cours 6 : Fonctions récursives ITC

• Les algorithmes proposés dans les chapitres précédents sont itératifs, cela signifie qu’ils
sont conçus à l’aide de boucles for ou while. Ce chapitre présente une autre manière d’écrire
un algorithme avec la notion de récursivité. La récursivité est une notion fondamentale en
informatique théorique et en programmation qui a la réputation d’être difficile, déroutante et
mystérieuse.

Définition : Un algorithme récursif est un algorithme récursif.

• Cette définition illustre bien le concept de récursivité, une fonction récursive est une
fonction qui fait appel à elle-même. D’ailleurs, comme l’a dit Stephen Hawking :

”To understand recursion, one must first understand recursion.”

• Les objectifs de ce chapitre sont les suivants :

I savoir écrire un algorithme récursif et comprendre son fonctionnement,

I être capable de transformer un programme récursif en programme itératif et réciproquement,

I étudier la validité et la complexité d’une fonction récursive.

1 Généralités et premiers exemples

1.1 Calcul de la factorielle d’un entier

1.1.1 Version itérative

• On va présenter ici l’exemple le plus classique pour appréhender la notion de récursivité. On
rappelle l’algorithme itératif suivant qui renvoie n!.

1 def fact1(n):
2 ”””renvoie n! où n est un entier naturel”””
3 p = 1
4 for i in range(1, n + 1):
5 p = p ∗ i
6 return(p)

• Cette fonction se comprend bien, elle se base sur la formule suivante :

n! = 1× 2× ...× (n− 1)× n

On remarque que si n = 0 alors on ne rentre pas dans la boucle et la fonction renvoie bien 1
conformément à la convention 0! = 1. On sait également que la complexité de cet algorithme, en
terme de nombre de multiplications, est linéaire.

1.1.2 Version récursive

• Voici un algorithme récursif qui réalise également le calcul de n!.

1 def fact2(n):
2 ”””renvoie n! où n est un entier naturel”””
3 if n == 0:
4 return(1)
5 else :
6 return(n ∗ fact2(n − 1))

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

• Cette fonction se comprend très bien puisqu’elle fait appel à la définition mathématique
suivante de la factorielle : {

0! = 1
∀n ∈ N∗, n! = n× (n− 1)!

• Par exemple lorsque l’on fait appel à fact2(3), la fonction fait appel à fact2(2) qui fait
appel à fact2(1) et qui fait appel à fact2(0). Cette dernière fonction renvoie 1 et les différents
produits s’effectuent pour renvoyer n!. Cette fonction fait appel à elle-même, c’est la particularité
de la récusivité.

• Nous verrons que pour de très nombreux problèmes mathématiques, il est naturel d’utiliser
une fonction récursive.

1.2 Principes généraux

L’exemple précédent permet de mettre en évidence quelques principes concernant l’implémentation
d’une fonction récursive.

• Une fonction récursive doit contenir une ou plusieurs conditions d’arrêt, sinon
le programme peut boucler indéfiniment. Dans l’exemple de la fonction fact2, c’est la condition
if n == 0 qui assure l’arrêt de la fonction. Plus précisément, la suite des valeurs de n passées
en paramètre est une suite strictement décroissante d’entiers naturels, nous allons donc atteindre
la condition d’arrêt (c’est-à-dire la valeur n = 0) en un nombre fini d’étapes.

• Par contre, si l’on essaie fact2(−2), l’algorithme ne se termine pas puisqu’il y a aura les
appels successifs : fact2(−3), fact2(−4), fact2(−5)...et l’on ne tombera jamais sur la condition
d’arrêt. Toutefois, il y a un mécanisme de sécurité en Python qui limite le nombre d’appels
récursifs. Par défaut cette limite est de l’ordre du millier et s’il y a un dépassement, un message
d’erreur sera affiché :

1 >>> fact2(1200) # on teste avec n=1200
2 Traceback (most recent call last) :
3 File ”<console>”, line 1, in <module>
4 File ”<tmp 1>”, line 13, in fact2
5 return(n ∗ fact2(n − 1))
6 File ”<tmp 1>”, line 13, in fact2
7 return(n ∗ fact2(n − 1))
8 File ”<tmp 1>”, line 13, in fact2
9 return(n ∗ fact2(n − 1))

10 [Previous line repeated 984 more times]
11 File ”<tmp 1>”, line 10, in fact2
12 if n == 0:
13 RecursionError: maximum recursion depth exceeded in comparison

• Il est toutefois possible de modifier le nombre maximal d’appels récursifs avec les instructions
suivantes :

1 import sys # un module qui gère certains paramètres du système
2 sys. setrecursionlimit (5000) # la limite est fixée à 5000

• Dans certains environnements l’usage de la récursivité n’est pas permis, c’est le cas dans le
secteur des logiciels embarqués dans les véhicules terrestres ou aériens ou encore dans les standards
de codage de la NASA (c’est la règle 1 des 10 règles fondamentales de codage de la NASA).

En effet, une erreur dans ce type de contexte pourrait avoir des conséquences importantes.

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

• Les valeurs passées en paramètre dans les différents appels récursifs doivent
être différentes, sinon la fonction s’exécute à chaque appel de façon identique et continue de
s’exécuter indéfiniment. Par exemple, il est évident qu’il est inutile d’implémenter la fonction
suivante :

1 def test (n):
2 return(test (n))

1.3 Pile de récursivité

• Il existe deux structures linéaires courantes en informatique : les files et les piles. Dans
une file, c’est le premier arrivé qui est le premier sorti, on peut penser à une file d’attente dans
une boulangerie. Dans une pile, c’est le dernier arrivé qui est le premier sorti, on peut penser à
une pile de livres posée sur une table : c’est le livre posé en dernier, sur le dessus de la pile, qui
sera pris en premier. C’est ce mécanisme de pile qui se retrouve dans la plupart des fonctions
récursives.

• Voici précisément ce qu’il se passe lorsque l’on fait appel à fact2(3) :

Les différents appels sont empilés par ordre décroissant de n puis dépilés en partant du
dernier.

• Lors de l’appel à fact2(n), la multiplication n × fact2(n − 1) est mise en attente puisque
la valeur de fact2(n − 1) n’est pas connue. La mémoire de la machine est donc sollicitée pour
stocker les informations en attente. On peut contourner cela en stockant les informations dans un
paramètre supplémentaire, appelé un accumulateur, cela permet de doter la fonction d’un peu de
mémoire. Voilà ce que cela donnerait pour la fonction factorielle :

1 def fact3(n, acc):
2 ”””renvoie n! en conservant les résultats au fur et à mesure”””
3 if n > 0:
4 return(fact3(n − 1, acc ∗ n))
5 else :
6 return(acc)

• Cette fonction renvoie la valeur de acc ∗ n! ainsi fact3(n, 1) renvoie n!. Il n’y a aucune
opération en attente hormis les appels récursifs.

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

2 Complexité d’une fonction récursive

2.1 Quelques exemples

• La plupart du temps, la complexité d’une fonction récursive se détermine à l’aide d’une
relation de récurrence. On reprend l’exemple fondamental de la factorielle :

1 def fact2(n):
2 ”””renvoie n! où n est un entier naturel”””
3 if n == 0:
4 return(1)
5 else :
6 return(n ∗ fact2(n − 1))

On note T (n) le nombre d’opérations effectuées lors de l’appel de fact2(n). À chaque appel,
on a deux opérations élémentaires effectuées : le test n == 0 et la multiplication. On en déduit
la relation de récurrence : {

T (0) = 1
∀n ≥ 1, T (n) = T (n− 1) + 2

C’est une suite arithmétique, on en déduit que pour tout n ∈ N, T (n) = 1+2n. La complexité
est linéaire.

• Voici un autre exemple :

1 def test (n):
2 ”””une fonction pas très utile ”””
3 if n == 0:
4 return ([])
5 else :
6 return([test (n − 1), test (n − 1), test (n − 1)])

On note également T (n), le nombre d’opérations effectuées lors de l’appel de test(n). On a
T (0) = 1 ce qui correspond au test n == 0 et pour n ≥ 1, T (n) = 3T (n − 1) + 1 puisque l’on
fait 3 fois appel à test(n− 1) et que l’on effectue une fois le test n == 0. On a :{

T (0) = 1
∀n ≥ 1, T (n) = 3T (n− 1) + 1

C’est une suite arithmético-géométrique, on en déduit que :

∀n ∈ N, T (n) =
3n+1 − 1

2

La complexité est en O(3n), c’est une complexité exponentielle.

2.2 L’exemple de suite de Fibonacci

• La suite de Fibonacci étant elle-même définie par récurrence, son calcul semble bien se prêter
à une implémentation récursive. On rappelle la définition de la suite de Fibonacci :{

F0 = 0 et F1 = 1
∀n ∈ N, Fn+2 = Fn+1 + Fn

Voici un algorithme récursif qui renvoie les termes de la suite de Fibonacci, c’est un algorithme
très naturel car il traduit simplement la formule de calcul :

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

1 def fib (n):
2 ”””renvoie le n−ième terme de la suite de Fibonacci”””
3 if n == 0 or n == 1:
4 return(n)
5 else :
6 return(fib (n − 1) + fib(n − 2))

• En faisant quelques tests, il apparait que pour des valeurs supérieures à 30, le calcul devient
lent. En effet, à chaque étape le nombre d’appels récursifs est quasiment multiplié par 2, voici ce
qu’il se passe si l’on calcule fib(5) :

• On se rend compte que notre algorithme souffre d’un problème de mémoire, il passe son
temps à calculer des valeurs qu’il a déjà calculées mais qu’il n’a pas mémorisées. On peut pallier
cela en créant un dictionnaire avec les valeurs déjà calculées, tout en conservant le caractère
récursif de l’algorithme :

1 memoire = {} # création du dictionnaire vide
2 def fib2(n):
3 ”””renvoie le n−ième terme de la suite de Fibonacci en sauvegardant les valeurs calculées ”””
4 if n in memoire: # si c’est une valeur déjà calculée
5 return(memoire[n])
6 if n == 0 or n == 1:
7 v = n
8 else :
9 v = fib2(n − 1) + fib2(n − 2)

10 memoire[n] = v # on sauvegarde la nouvelle valeur pour les prochains appels
11 return(v)

• L’algorithme est alors considérablement plus rapide mais nous n’évitons pas le problème de
limitation du nombre maximal d’appels récursifs par rapport à l’algorithme de Fibonacci itératif.

• Grâce à cet exemple, nous garderons en tête qu’il faut faire attention à l’explosion du nombre
d’appels récursifs.

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

3 Retour sur quelques algorithmes classiques

3.1 Exponentiation rapide

• On rappelle le principe de l’exponentiation rapide pour calculer xn où n ∈ N et x est un
flottant. {

xn = (xk)2 si n est pair avec n = 2k

xn = x× (xk)2 si n est impair avec n = 2k + 1

Cela nous permet d’écrire directement l’algorithme récursif suivant :

1 def expo(x, n):
2 ”””exponentiation rapide récursive”””
3 if n == 0:
4 return(1)
5 else :
6 if n % 2 == 0:
7 return(expo(x ∗∗ 2, n // 2)) # cas de l ’exposant pair
8 else :
9 return(x ∗ expo(x ∗∗ 2, n // 2)) # cas de l ’exposant impair

• Cet algorithme est plus simple à comprendre que sa version itérative. On peut démontrer
que la complexité ne change pas, elle est en O(log(n)).

3.2 Recherche dans une liste triée

• L’algorithme de recherche d’un élément dans une liste triée a lui aussi sa version récursive :

1 def recherche dico rec (L, x):
2 ”””Renvoie True si l ’ élément x se trouve dans la liste triée L et False sinon”””
3 if L == []:
4 return(False)
5 else :
6 m = len(L) // 2 #le milieu de la liste
7 if x == L[m]: # cas où l’élément est au milieu
8 return(True)
9 elif x > L[m]:

10 return(recherche dico rec (L[m + 1:], x)) # moitié droite de la liste
11 else :
12 return(recherche dico rec (L[:m], x) # moitié gauche de la liste

• La complexité est toujours en O(log(n)).

2025-2026

MPSI2 Cours 6 : Fonctions récursives ITC

4 Validité d’un algorithme récursif

• Nous avons vu que la terminaison d’un algorithme récursif est lié à la condition d’arrêt qui
doit figurer dans l’algorithme. La correction d’un algorithme récursif se démontre par récurrence.
À titre d’exemple, justifions la correction de l’algorithme donnant la factorielle d’un entier que
l’on rappelle ici :

1 def fact2(n):
2 ””” n est un entier positif ”””
3 if n == 0:
4 return(1)
5 else :
6 return(n ∗ fact2(n − 1))

On considère la propriété suivante :

Pn : ” la fonction fact2(n) renvoie n!”

I P0 est vraie puisque c’est la condition d’arrêt.

I Supposons que la propriété Pn soit vraie pour un entier naturel n fixé. La fonction
fact2(n + 1) renvoie (n + 1)× fact2(n). Or fact2(n) vaut n! par hypothèse de récurrence
donc fact2(n+ 1) renvoie bien (n+ 1)×n! = (n+ 1)!. On en déduit que Pn+1 est vraie ce qui
termine la récurrence.

I D’après le principe de récurrence, la propriété est démontrée et la correction de l’algorithme
est assurée.

• Les fonctions récursives qui illustrent ce cours se comprennent relativement bien mais ce
n’est pas toujours le cas. On termine ce cours en mentionnant la célèbre fonction d’Ackermann :

1 def ack(m, n):
2 if m == 0:
3 return(n + 1)
4 elif m > 0 and n == 0:
5 return(ack(m − 1, 1))
6 else :
7 return(ack(m − 1, ack(m, n − 1)))

• Comprendre ce que renvoie la fonction et démontrer sa validité est déjà beaucoup moins
aisé. Le calcul de ack(4, 4) met les ordinateurs à rude épreuve.

2025-2026

