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A-Préliminaires
1. (a) On considère l’hypothèse suivante que l’on va démontrer par récurrence sur n ∈ N :

Hn : ”un ∈ J”

• Initialisation. Pour n = 0, on a u0 ∈ J par hypothèse.

• Hérédité. On suppose que un ∈ J pour un entier naturel n ∈ N fixé.
On a un+1 = f(un) ∈ J car f(J) ⊂ J . On en déduit que Hn+1 est vraie. Ce qui termine la récurrence.

Si u0 ∈ J alors pour tout n ∈ N, un ∈ J

(b) C’est immédiat d’après la question précédente, si u0 ∈ J alors pour tout n ∈ N, on a un ∈ J et si J est
borné alors (un) également.

(un) est bornée

(c) La fonction f est définie, continue et dérivable sur R \ {1}. De plus f ′ : x 7→ − 1

(x− 1)2
est strictement

négative sur R \ {1}. On en déduit que f est décroissante sur ] −∞, 1[ et sur ]1,+∞[. En particulier, la
fonction f étant continue, on a :

f
(]
−∞, 1

2

])
=
[
f
(1

2

)
, lim
x→−∞

f(x)
[

= [−2, 0[⊂
]
−∞, 1

2

]
]
−∞, 1

2

]
est stable par f

On en déduit, d’après la question (a), que comme u0 ∈
]
−∞, 1

2

]
alors pour tout n ∈ N, un ∈

]
−∞, 1

2

]
.

Ainsi la suite (un) est correctement définie puisqu’elle évite la valeur 1.

(un) est correctement définie

2. (a) On suppose que lim
n→+∞

un = l ∈ I alors lim
n→+∞

un+1 = l car (un+1) est une suite extraite de (un).

Or pour tout n ∈ N, on a un+1 = f(un) et en passant à la limite dans cette relation, nous obtenons l = f(l).
En effet, on a bien lim

n→+∞
f(un) = f(l) grâce à la continuité de f en l ∈ I.

Si (un) converge, c’est vers un point fixe de f

(b) i. On pose g : x 7→ f(x) − x définie et continue sur [a, b] car f l’est. On a g(a) = f(a) − a ≥ 0 car
f(a) ∈ [a, b] et g(b) = f(b)− b ≤ 0 car f(b) ∈ [a, b]. D’après le théorème des valeurs intermédiaires, on
en déduit qu’il existe c ∈ [a, b] tel que g(c) = 0. Or g(c) = 0 équivaut à f(c) = c.

f a un point fixe

ii. Le résultat n’est plus vérifié dans ce cas. Si l’on prend par exemple f : x 7→ 1

2
x définie sur ]0, 1] et à

valeurs dans ]0, 1], la fonction f est bien continue mais ne possède pas de point fixe dans l’intervalle
]0, 1] puisque son seul point fixe sur R est 0.
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iii. C’est faux également, la fonction f : x 7→ x+ 1 définie sur R et à valeurs dans R n’a clairement pas de
point fixe.

(c) i. L’ensemble A est inclus dans R, non vide car 0 ∈ A puisque f(0) ≥ 0 et majoré par 1. D’après la
propriété de la borne supérieure :

A admet une borne supérieure x0 ∈ [0, 1]

ii. Soit x ∈ A, on a x ≤ x0 car x0 est un majorant de A. Par croissance de f , on obtient f(x) ≤ f(x0), or
x ∈ A donc x ≤ f(x). En combinant les deux inégalités, on en déduit que : x ≤ f(x0).

f(x0) est un majorant de A

Or x0 est le plus petit majorant de A, d’où :

x0 ≤ f(x0)

iii. On suppose que x0 < f(x0), par croissance de f , il vient : f(x0) ≤ f(f(x0)) ainsi f(x0) ∈ A : c’est
contradictoire car f(x0) > x0 avec x0 qui est un majorant de A. On en déduit que x0 ≥ f(x0) et d’après
la question précédente : x0 ≤ f(x0). Finalement f(x0) = x0.

x0 est un point fixe de f

iv. C’est faux pour une fonction décroissante :

f : [0, 1] → [0, 1]

x 7→


1 si x ∈

[
0,

1

2

]
0 si x ∈

]1

2
, 1
]

3. Si f est une fonction affine, la suite (un) est définie par :{
u0 ∈ R
∀n ∈ N, un+1 = aun + b

On reconnait alors une suite arithmético-géométrique et on distingue les cas suivants :
• Si a = 1, la suite est arithmétique et on sait alors que pour tout n ∈ N, un = u0 + nb.

I Si b = 0, la suite (un) est constante égale à u0, elle converge vers u0.

I Si b > 0, la suite (un) diverge vers +∞.

I Si b < 0, la suite (un) diverge vers −∞.

• Si a 6= 1, on sait que :

∀n ∈ N, un =
b

1− a
+
(
u0 −

b

1− a

)
an

I Si u0 =
b

1− a
alors la suite (un) converge vers

b

1− a
.

I Si |a| < 1, la suite (un) converge également vers
b

1− a
.
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I Si u0 6=
b

1− a
et a > 1, la suite (un) diverge vers +∞ ou −∞ selon le signe de u0 −

b

1− a
.

I Si u0 6=
b

1− a
et a ≤ −1, la suite (un) diverge.

B-Cas où f est croissante
1. (a) On considère l’hypothèse suivante que l’on va démontrer par récurrence sur n ∈ N :

Hn : un ≤ un+1

• Initialisation. Pour n = 0, on a u0 ≤ u1 par hypothèse.

• Hérédité. On suppose que un ≤ un+1 pour n ∈ N fixé.
Par croissance de f , on obtient f(un) ≤ un+1, c’est-à-dire un+1 ≤ un+2 ce qui constitue bien l’hypothèse
de récurrence au rang n+ 1. Ceci termine la récurrence.

Si u0 ≤ u1 alors la suite (un) est croissante

(b) On considère l’hypothèse suivante que l’on va démontrer par récurrence sur n ∈ N :

Hn : un ≥ un+1

• Initialisation. Pour n = 0, on a u0 ≥ u1 par hypothèse.

• Hérédité. On suppose que un ≥ un+1 pour n ∈ N fixé.
Par croissance de f , on obtient f(un) ≥ un+1, c’est-à-dire un+1 ≥ un+2 ce qui constitue bien l’hypothèse
de récurrence au rang n+ 1. Ceci termine la récurrence.

Si u0 ≥ u1 alors la suite (un) est décroissante

(c) i. On a g(u0) = f(u0) − u0 = u1 − u0 d’après les deux questions précédentes, le signe de u1 − u0 nous
indique la monotonie de la suite (un). Plus précisément si g(u0) ≥ 0, la suite (un) est croissante, d’après
la question (a) et si g(u0) ≤ 0, la suite (un) est décroissante, d’après la question (b).

ii. Dans la question 2.(a) de la partie A, nous avons vu que si la suite (un) converge c’est vers un point
fixe de f lorsque f est continue, ce qui est le cas ici. Or les points fixes de f sont les zéros de g puisque
pour tout x ∈ I :

f(x) = x⇔ f(x)− x = 0⇔ g(x) = 0

2. (a) La fonction f est clairement positive, continue car polynomiale sur R+. De plus x 7→ x2 croit sur R+ donc
f est également croissante sur R+.

f est continue et croissante sur R+

(b) Pour x ∈ R+, on a g(x) =
1

4
x2 − x+ 1 =

(1

2
x− 1

)2
≥ 0. Au vu de cette forme factorisée, on a bien 2 qui

est le seul zéro de g sur R+.

g est positive et s’annule en 2
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(c) i. Par croissance et par continuité de f , on a f([0, 2]) = [f(0), f(2)] = [1, 2] ⊂ [1, 2].

[0, 2] est un intervalle stable par f

Or u0 ∈ [0, 2], ainsi d’après la question 1.(a) de la partie A, nous savons que (un) est une suite de
l’intervalle [0, 2]. En particulier :

(un) est bornée

ii. La fonction g est positive sur R+ donc d’après la question 1.(c).i., nous savons que (un) est croissante.

(un) est croissante

iii. D’après le théorème de la limite monotone, la suite (un) étant croissante et majorée, elle converge.
Sa limite est donc un point fixe de f sur l’intervalle [0, 2], c’est-à-dire un zéro de g. Or le seul point
d’annulation de g est 2.

Si u0 = 1 alors la suite (un) converge vers 2

(d) i. Toujours par croissance et continuité de f , on a : f([2,+∞[) = [f(2), lim
x→+∞

f(x)[= [2,+∞[.

[2,+∞[ est un intervalle stable par f

ii. Toujours grâce à la positivité de la fonction g sur [2,+∞[, on sait que (un) est croissante.

iii. Par l’absurde, supposons que la suite (un) soit majorée, étant croissante, elle converge nécessairement
vers un point fixe de f . Le seul point fixe de f sur R+ est 2, ainsi (un) converge vers 2. Or par croissance

de f , pour tout n ∈ N, on a : un ≥ u0 =
5

2
et en passant à la limite dans cette relation, nous obtenons

2 ≥ 5

2
: ce qui est contradictoire. Ainsi la suite croissante (un) n’est pas majorée, c’est donc qu’elle

diverge vers +∞.

Si u0 =
5

2
alors la suite (un) diverge vers +∞

3. (a) Remarquons d’abord que l’équation x2−x−1 = 0 a pour discrimimant : ∆ = 5, elle possède deux solutions
réelles :

x1 =
1 +
√

5

2
et x2 =

1−
√

5

2

Seul le réel x1 est positif, on note :

ϕ =
1 +
√

5

2

On peut démontrer par une récurrence immédiate que pour n ∈ N :

Hn : un ≥ 0

• Initialisation. On a bien u0 = 1 ≥ 0.
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• Hérédité. Soit n ∈ N, on suppose que un ≥ 0 alors un+1 =
√

1 + un est bien défini et un+1 ≥ 0. Ce qui
démontre que Hn est vraie et termine la récurrence.

(un) est bien définie

(b) Démontrons par récurrence sur n ∈ N que :

Hn : un ∈ [0, ϕ]

• Initialisation. On a : u0 = 1 ∈ [0, ϕ] puisque ϕ ≈ 1.618.

• Hérédité. Pour n ∈ N fixé, on suppose que un ∈ [0, ϕ]. Par croissance et continuité de la fonction f sur
R+, on en déduit que :

un+1 = f(un) ∈ f([0, ϕ]) = [f(0), f(ϕ)] = [1, ϕ] ⊂ [0, ϕ]

En effet, f(ϕ) =
√

1 + ϕ =
√
ϕ2 = ϕ. Ce qui démontre que Hn est vraie et achève la récurrence.

∀n ∈ N, un ∈ [0, ϕ]

(c) La fonction f : x 7→
√

1 + x est croissante sur R+ comme composée des fonctions x 7→ 1 +x et x 7→
√
x qui

sont croissantes sur R+ et sur [1,+∞[. Démontrons par récurrence sur n ∈ N que :

Hn : un+1 ≥ un

• Initialisation. On a : u1 =
√

2 ≥ u0 = 1.

• Hérédité. Pour n ∈ N fixé, on suppose que un+1 ≥ un, en appliquant la fonction f qui est croissante sur
R+, on a : f(un+1) ≥ f(un), c’est-à-dire un+2 ≥ un+1. Ce qui démontre que Hn+1 est vraie et achève la
récurrence.

(un) est croissante

(d) D’après les questions (b) et (c), la suite (un) est croissante et majorée par ϕ. D’après le théorème de la
limite monotone, on en déduit que (un) converge.

(un) est convergente

Pour x ∈ R+, on a :
f(x) = x⇔

√
1 + x = x⇔ 1 + x = x2 ⇔ x = ϕ

Le seul point fixe de f sur R+ est ϕ

D’après la question (d), notons l la limite de (un). Pour tout n ∈ N, on a : un+1 = f(un). En passant à la
limite dans l’égalité et par continuité de f , on en déduit que l = f(l) puisque lim

n→+∞
un+1 = l. Ainsi l est

un point fixe de f sur R+, d’après la question précédente, il n’y a pas le choix : la suite converge vers ϕ.

lim
n→+∞

un = ϕ
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C-Cas où f est décroissante
1. (a) La fonction f est définie sur I et à valeurs dans I ainsi h = f ◦f est bien définie sur I. De plus, la composée

de deux fonctions décroissantes et une fonction croissante.

f ◦ f est croissante sur I

(b) Pour tout n ∈ N, on a u2(n+1) = u2n+2 = f(f(u2n)) = h(u2n) et u2(n+1)+1 = u2n+3 = f(f(u2n+1)) =
h(u2n+1). Comme la fonction h est croissante, d’après la partie B, on sait que (u2n) et (u2n+1) sont mono-
tones. De plus, pour tout n ∈ N :

u2n ≤ u2n+2 ⇒ u2n+1 ≥ u2n+3

ceci en appliquant la fonction f qui est décroissante. Ainsi lorsque (u2n) est croissante, on a (u2n+1)
décroissante. On procède de même pour démontrer que si (u2n) est décroissante alors (u2n+1) est croissante.

(u2n) et u2n+1 sont monotones de sens de variation opposés

2. (a) On démontre par récurrence sur n ∈ N que :

Hn : un ≥ 0

• Initialisation. On a u0 ∈ [0,
√

5] donc H0 est vraie.

• Hérédité. Si l’on suppose que un ≥ 0 pour un entier naturel n fixé, on a : un+1 =
un + 5

un + 1
≥ 0.

Ce qui démontre que Hn+1 est vraie et termine la récurrence.
On en déduit que la suite (un) est bien définie puisqu’aucun terme de la suite ne prend la valeur −1.

(un) est bien définie

(b) La fonction f est dérivable sur R+ et :

∀x ∈ R+, f
′(x) =

(x+ 1)− (x+ 5)

(x+ 1)2
=

−4

(x+ 1)2
< 0

f est décroissante sur R+

(c) Il convient tout d’abord d’expliciter la fonction g. Pour x ∈ R+, on a :

g(x) = f(f(x))− x =
x+5
x+1 + 5
x+5
x+1 + 1

− x =
x+ 5 + 5(x+ 1)

x+ 5 + x+ 1
− x =

6x+ 10

2x+ 6
− x =

−2x2 + 10

2x+ 6
=

5− x2

x+ 3

On en déduit le signe de g sur R+ : g est positive sur [0,
√

5] et négative sur [
√

5,+∞[, elle s’annule en
x =
√

5.
En particulier :

l’unique point fixe de f ◦ f sur R+ est
√

5
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(d) On sait que l’application f ◦ f est croissante et continue sur R+ ainsi en utilisant les calculs menés à la
question précédente qui donnent une formule pour f ◦ f , on a :

f ◦ f([0,
√

5]) = [f(f(0)), f(f(
√

5))] =
[5

3
,
√

5
]
⊂ [0,

√
5]

[0,
√

5] est stable par f ◦ f

(e) La suite (u2n) est associée à la fonction f ◦ f car pour tout n ∈ N, u2n+2 = f ◦ f(u2n). L’intervalle [0,
√

5]
est stable par f ◦ f et u0 ∈ [0,

√
5], on en déduit que pour tout n ∈ N, u2n ∈ [0,

√
5]. En particulier, la suite

(u2n) est majorée, de plus elle est croissante car la fonction g est positive sur [0,
√

5]. D’après le théorème de
la limite monotone, toute suite croissante et majorée converge, nécessairement vers un point fixe de f ◦ f ,
c’est-à-dire vers

√
5 qui est le seul point fixe de f ◦ f sur R+ d’après la question (c).

(u2n) converge vers
√

5

(f) On a u0 ∈ [0,
√

5] et u1 = f(u0). Or f([0,
√

5]) = [f(
√

5), f(0)] = [
√

5, 5] ceci par continuité et par
décroissance de f .

u1 ∈ [
√

5,+∞[

L’intervalle [
√

5,+∞[ est stable par f ◦f car f ◦f([
√

5,+∞[) = [
√

5, 3[⊂ [
√

5,+∞[. Comme u1 ∈ [
√

5,+∞[,
on en déduit que pour tout n ∈ N, u2n+3 ∈ [

√
5,+∞[.

La suite (u2n+1) est minorée, décroissante car la fonction g est négative sur [
√

5,+∞[, on en déduit que
(u2n+1) converge vers l’unique point fixe de f ◦ f , c’est-à-dire

√
5.

(u2n+1) converge vers
√

5

(g) Il reste à utiliser le théorème de recollement pour affirmer à l’aide des deux questions précédentes que :

(un) converge vers
√

5

(h) Si u0 ∈ [
√

5,+∞[, on vérifie que u1 ∈ [0,
√

5] et ce cas est identique au précédent en échangeant le rôle des
suites extraites (u2n) et (u2n+1). On a également :

(un) converge vers
√

5

D-Cas où f est lipschitzienne
1. (a) Fixons b ∈ I. Pour démontrer que f est continue en b, il s’agit de vérifier que lim

x→b
f(x) = f(b). Or d’après

propriété portant sur la fonction f , on sait que :

∀x ∈ I, |f(x)− f(b)| ≤ k|x− b|

On a lim
x→b

k|x− b| = 0 donc lim
x→b
|f(x)− f(b)| = 0, ce qui signifie bien que lim

x→b
f(x) = f(b).

f est continue sur I
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(b) i. Démontrons la propriété par récurrence sur n ∈ N :

Hn : |un − a| ≤ kn|u0 − a|

• Initialisation. Pour n = 0, la formule devient : |u0− a| ≤ |u0− a|. On en déduit que H0 est vérifiée.

• Hérédité. On suppose Hn vraie pour un entier naturel n fixé. On a :

|un+1 − a| = |f(un)− f(a)| ≤ k|un − a| ≤ k × kn|u0 − a| = kn+1|u0 − a|

Ceci en utilisant la définition de f k-lipschitzienne et l’hypothèse de récurrence.
On a démontré que Hn est vraie, ce qui termine la récurrence.

∀n ∈ N, |un − a| ≤ kn|u0 − a|

ii. On passe à la limite dans l’inégalité précédente car comme lim
n→+∞

kn = 0 puisque k ∈ [0, 1[, on a

lim
n→+∞

kn|u0 − a| = 0. On en déduit que lim
n→+∞

un = a.

lim
n→+∞

un = a

iii. La fonction f possède au plus un point fixe car sinon la suite (un) définie ci-dessus possèderait deux
limites, ce qui est absurde par unicité de la limite.

La fonction f poosède au plus un point fixe

2. (a) On démontre par récurrence sur n ∈ N que :

Hn : un ≥ 0

• Initialisation. On a u0 ∈ R+ donc H0 est vraie.

• Hérédité. Si l’on suppose que un ≥ 0 pour un entier naturel n fixé, on a : un+1 =
1

2 + un
≥ 0.

Ce qui démontre que Hn+1 est vraie et termine la récurrence.
On en déduit que la suite (un) est bien définie puisqu’aucun terme de la suite ne prend la valeur −2.

(un) est bien définie

(b) Vérifions la définition, on se donne (x, y) ∈ (R+)2, on a :

|f(x)− f(y)| =
∣∣∣ 1

2 + x
− 1

2 + y

∣∣∣ =
∣∣∣ y − x
(2 + x)(2 + y)

∣∣∣ ≤ ∣∣∣y − x
2× 2

∣∣∣ =
1

4
|x− y|

f est
1

4
− lipschitzienne

(c) D’après l’étude menée à la question 1., on en déduit que (un) converge vers l’unique point fixe de f sur R+.
Pour x ∈ R+, on a :

f(x) = x⇔ 1

2 + x
= x⇔ x2 + 2x− 1 = 0⇔ x = −1 +

√
2

(un) converge vers − 1 +
√

2
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E-Cas où f est une homographie
1. (a) Soit x ∈ R∗ et y ∈ R, on procède par équivalences :

y =
x+ 1

x
⇔ xy = x+ 1⇔ x =

1

y − 1

En effet, on voit que y 6= 1 grâce à la relation xy = x+ 1.
Ceci démontre que f réalise une bijection de R∗ dans R \ {1} et :

f−1 : y 7→ 1

y − 1

(b) i. • Si u0 = x0 = 0, il est clair que l’on ne peut pas calculer u1 car u1 =
u0 + 1

u0
.

• On a x1 = f−1(x0) = f−1(0) = −1. Si u0 = −1 alors u1 = f(u0) = 0 et on ne pourra pas calculer u2.

ii. On suppose que la suite (un) n’est pas bien définie, cela équivaut à dire qu’il existe k ∈ N tel que
uk = 0. On applique k fois la fonction f−1 à cette relation pour obtenir u0 = xk comme voulu et cette
opération préserve notre raisonnement par équivalences car on peut appliquer k fois f pour revenir à
la relation de départ.

(un) n’est pas bien définie si et seulement si il existe k ∈ N tel que u0 = xk

2. Pour n ∈ N, on a :

un+2 =
aun+1 + b

cun+1 + d
=
aaun+b
cun+d + b

caun+b
cun+d + d

=
a(aun + b) + b(cun + d)

c(aun + b) + d(cun + d)
=

(a2 + bc)un + ab+ bd

(ac+ dc)un + bc+ d2

Or, par hypothèse, bc = ad ainsi a2 + bc = a(a+ d) et bc+ d2 = d(a+ d). En reprenant le calcul :

un+2 =
a(a+ d)un + b(a+ d)

c(a+ d)un + d(a+ d)
=
aun + b

cun + d
= un+1

On vient de démontrer que pour tout n ≥ 0, on a un+2 = un+1.

(un) est constante à partir du rang 1

3. Si c = 0 alors pour n ∈ N, on a un+1 =
a

d
un +

b

d
.

Si c = 0 alors (un) est une suite arithmético-géométrique

4. Par définition de la suite (un), on a pour tout n ∈ N, (cun +d)un+1 = aun + b. Si l’on suppose que (un) converge
vers l ∈ R alors en passant à la limite dans l’égalité précédente, on a :

(cl + d)l = al + b⇔ cl2 + (d− a)l − b = 0

Si (un) converge vers l ∈ R alors cl2 + (d− a)l − b = 0
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5. (a) Les deux solutions α et β de l’équation (E) sont les points fixes de la fonction f . Si, par exemple, u0 = α
alors u1 = f(u0) = f(α) = α et par une récurrence immédiate (un) est constante égale à α. De même si
u0 = β.

Si u0 ∈ {α, β} alors la suite est constante

(b) i. Pour n ∈ N, on a :

vn+1 =
un+1 − α
un+1 − β

=
aun+b
cun+d − α
aun+b
cun+d − β

=
(a− cα)un + b− dα
(a− cβ)un + b− dβ

Or d’après les relations entre les coefficients et les solutions d’une équation de degré 2, ici l’équation

(E), on a α+ β =
a− d
c

et αβ = −b
c
. En particulier avec la première relation, on a : cα+ cβ = a− d.

Ainsi :
a− cα = cβ + d

b− dα = −cαβ − dα = −α(cβ + d)

et de même :
a− cβ = cα+ d

b− dβ = −β(cα+ d)

En reprenant le calcul, on a :

vn+1 =
(cβ + d)un − α(cβ + d)

(cα+ d)un − β(cα+ d)
=
cβ + d

cα+ d
× un − α
un − β

=
cβ + d

cα+ d
vn

(vn) est géométrique de raison q =
cβ + d

cα+ d

ii. • Déjà remarquons que q 6= 1 car α 6= β donc cβ + d 6= cα+ d.

• Si q = −1 alors la suite (vn) oscille entre les deux valeurs v0 et v1 donc (un) prend également les
deux valeurs u0 et u1 alternativement.

• Si |q| < 1 alors (vn) converge vers 0. La relation vn =
un − α
un − β

est équivalente à

un =
α− βvn
1− vn

(F)

cette relation étant bien définie à partir d’un certain rang car (vn) ne prend pas une infinité de fois la
valeur 1 comme elle converge vers 0. Ainsi (un) converge vers α.

• Si q > 1 alors (vn) diverge vers +∞ et la relation (F) montre que (un) converge vers β.

• Enfin, si q < −1, la suite (vn) n’a pas de limite mais cependant (|vn|) tend vers +∞ ainsi toujours
avec la relation (F), on en déduit que (un) converge vers β également.

iii. Pour n ∈ N, on a :

un =
α− βvn
1− vn

=
α− βv0qn

1− v0qn

avec q =
cβ + d

cα+ d
et v0 =

u0 − α
u0 − β

.
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On ne prête pas attention au dénominateur qui ne s’annule pas implicitement puisque l’on a supposé
que (un) est bien définie.

∀n ∈ N, un =
α− βv0qn

1− v0qn

6. (a) L’unique solution d’une équation polynomiale du type ax2 + bx + c = 0 avec ∆ = 0 est x0 =
−b
2a

. Ici cela
donne :

α =
a− d

2c

De cette relation, on déduit directement :

cα+ d = a− cα

(b) Comme à la question 5.(a) :

Si u0 = α alors (un) est constante

(c) i. Soit n ∈ N, on a :

vn+1 =
1

un+1 − α

=
1

aun+b
cun+d − α

=
cun + d

(a− cα)un + b− αd

=
cun + d

(a− cα)(un − α)
car cα2 + (d− a)α− b = 0 donc b− dα = −α(a− cα)

=
c(un − α) + cα+ d

(a− cα)(un − α)

=
c

a− cα
+

cα+ d

(a− cα)(un − α)

=
c

a− cα
+

1

un − α
car cα+ d = a− cα

=
c

a− cα
+ vn

On a démontré que (vn) est une suite arithmétique de raison :

r =
c

a− cα
=

c

a− a−d
2

=
2c

a+ d
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De plus, r 6= 0 car c 6= 0 et on a bien a+ d 6= 0 car :

(a+ d)2 = (a− d)2 + 4ad = −4bc+ 4ad = 4(ad− bc) 6= 0

(vn) est arithmétique de raison r =
2c

a+ d

ii. Comme la raison r n’est pas nulle, on a lim
n→+∞

vn = +∞ ou lim
n→+∞

vn = −∞ selon le signe de r. Dans

les deux cas, comme pour tout n ∈ N, vn =
1

un − α
, on a :

lim
n→+∞

un = α

iii. Pour tout n ∈ N, on a un = α+
1

vn
car vn =

1

un − α
ainsi :

∀n ∈ N, un = α+
1

v0 + nr

avec r =
2c

a+ d
et v0 =

1

u0 − α
.

7. L’équation (E) devient dans notre cas : l2 + l = 0, il y a deux solutions α = −1 et β = 0, on est donc dans le
cadre de la question 5. On pose :

vn =
un − α
un − β

=
un

un + 1
= 1 +

1

un

D’après la question 5., (vn) est géométrique de raison 2 et v0 = 2 ainsi :

∀n ∈ N, vn = 2n+1

On en déduit que pour tout n ∈ N :

un =
1

2n+1 − 1

∀n ∈ N, un =
1

2n+1 − 1


