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Pierre de Fermat est un magistrat francais du XVII ieme siecle, il est surnommé “le prince des amateurs”. On
lut doit de nombreux résultats mathématiques, notamment en arithmétique. Il s’est également intéressé aux sciences
physiques avec le principe de Fermat en optique.

A-Préliminaires
1. On a les décompositions suivantes :

0=02+0%]|5=12+2% [13=22+3
1=02+1%2|8=22+2% |16 =0%+42
2=124+1219=02+3% |17=12+42
4=02422110=12+3%|18 =32+ 32

Par contre 3, 6, 7, 11, 12, 14 et 15 ne semblent pas s’écrire comme somme de deux carrés d’entiers naturels.

1l semble difficile, méme avec ces quelques exemples, de trouver une regle générale pour savoir quels sont les
entiers qui s’écrivent comme somme de deux carrés d’entiers naturels.

2. Soit z € N, examinons les valeurs possibles de z et 22 modulo 4. On a :

2 modulo 4 | 22 modulo 4
0 0

1 1
2 0
3 1

Ainsi si (x,y) € N2, on a 22 + y? qui peut étre congru & 0, 1 ou 2 modulo 4. Ceci démontre que :

un entier congru a 3 modulo 4 ne peut pas s’écrire comme somme de deux carrés d’entiers naturels I

Ce premier résultat permet d’expliquer que 3, 7, 11 et 15 ne sont pas somme de deuz carrés d’entiers naturels.

3. (a) Démontrons le résultat par récurrence sur le nombre de facteurs dans le produit en question. Pour r» € N*,
on considere :

,
M, @ Si(ti)1<i<r est une famille d’entiers congrus a 1 modulo 4 alors Hti est congru a 1 modulo 4
i=1

» Sir =1, le résultat est évident.

» On suppose que H, est vraie pour r € N* fixé. Soit (¢;)1<i<r+1 une famille de r + 1 entiers naturels
congrus a 1 modulo 4. En utilisant I’hypothese de récurrence, on a :

[[ti=104 ettryr=1[4
=1

Par produit de ces deux congruences, il vient :

r+1 r

It = ( ti)tm = 1x1[4
=1 1

1=

Ce qui démontre que H,1 est vraie et acheéve la récurrence.

Un produit d’entiers naturels congrus a 1 modulo 4 est congru a 1 modulo 4'
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(b) i. Remarquons que M est congru & 3 modulo 4 puisque :

M:(4ﬁpi)—150—153[4]

Par I’absurde supposons que M soit un nombre premier. Comme il est congru a 3 modulo 4, c’est I'un
des p; pour un certain i € [1,n]. Ceci est absurde puisque M est clairement strictement supérieur a

chacun des p; ou i € [1,n].
M n’est pas premier I

ii. Le nombre M est impair, il se décompose comme un produit de facteurs premiers impairs. Si tous
les diviseurs premiers qui interviennent dans la décomposition de M sont congrus a 1 modulo 4 alors,
d’apres la question (a), M est également congru & 1 modulo 4, ce qui n’est pas le cas.

M possede un diviseur premier congru a 3 modulo 4'

iii. Le diviseur premier de M congru a 3 modulo 4 trouvé a la question précédente est I'un des (p;)1<i<n,
notons le p;, ou ig € [1,n].
On a:

n
4Hpi, c'est-a-dire p;,|M + 1 et p; | M
i=1

Dig

Ainsi : p;,[(M + 1 — M) ce qui est absurde. L’hypothese selon laquelle P34 contient un nombre fini

d’éléments est fausse et par suite :

4. » Existence. Soit p un nombre premier et a € [1,p—1]. Les entiers a et p sont premiers entre eux, ce qui nous
permet d’appliquer le théoreme de Bézout :

(@, ) € Z2, tels que ati + pv = 1

En prenant cette relation modulo p cela donne au = 1 [p]. Cependant rien ne garantit que u convienne puisque
l'on ne sait pas si u € [1,p — 1]. Pour contourner ce probléme, on consideére le reste de la division euclidienne
de @ par p que 'on note u. On a u = u [p], ainsi au = 1 [p]. D’apres le théoreme de la division euclidienne, on
sait que u € [[0,p — 1], mais u # 0 sinon au = 0 [p]. Finalement v € [1,p — 1] et au =1 [p)].

» Unicité. Soient (u,u’) € [1,p — 1]* tels que au = 1 [p] et av’ = 1 [p]. On a : au = av’ [p], c’est-a-dire
a(u — ') = 0 [p]. Ainsi pla(u — ') mais p est premier avec a, ce qui implique via le théoréme de Gauss que
plu —u'. Cependant :

1<u<p—1letl<u <p—1impliqueque —(p—2)<u—u <p-—2

En résumé u — v’ est un multiple de p et u—u’ € [—(p—2),p— 2], nécessairement u —u' = 0, c’est-a-dire u = u’.
Ce qui démontre 'unicité.

Si p est premier : pour tout a € [1,p — 1], a posséde un unique inverse modulo p

5. » Existence. Soit p un nombre premier et a € [1,p — 1]. On va voir que t = p — a répond a la question, en
effet :

t+a=p—a+a=p=0 [p|
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1.
2.

et ¢t € [1,p — 1] puisque :
I<a<p-lel<p—a<p-1

» Unicité. Soient (¢,t') € [1,p—1]? tels que a+t =0 [p] et a+t =0 [p]. Onat+a =t +a [p] ce qui implique
que t =t [p]. Or t et ¢’ sont deux éléments de [1,p — 1] donc t = ¢'. Ce qui démontre 1'unicité.

Si p est premier : pour tout a € [1,p — 1], a possede un unique opposé modulo p

B-Une équation modulaire

Sip=2,ona:[l,p—1]={1} et 1> =1 = —1 [2]. Ce qui démontre le lemme 1 dans le cas ot p = 2.

(a) Observons d’abord que si y € [1,p— 1] alors —y, y ! et —y~! sont définis de facon unique et appartiennent
a [1,p— 1] d’apres les questions 4. et 5. de la partie précédente. Vérifions les propriétés requises pour avoir
une relation d’équivalence.

» Réflexivité. Soit x € [1,p — 1], on a xRz puisque x = z. La relation binaire R est réflexive.
» Symétrie. Soient (x,y) € [1,p — 1], tels que Ry. Il y a 4 cas qui peuvent se présenter :
e Si z = y alors y = x et par suite yRz.
e Si x = —y, en revenant a la définition de 'opposé donnée dans la question 5. de la partie
précédente, on a x +y = 0 [p], c’est-a~dire y + x = 0 [p]. Ce qui démontre que y = —x et par suite yRz.
e Si z =y !, en revenant & la définition de l'inverse donnée dans la question 4. de la partie
précédente, on a zy =1 [p], c’est-a-dire yz = 1 [p]. Ce qui démontre que y = ! et par suite yRz.
eSiz=—y L onaz+y =0 [p doncy ! = —z. Ceci implique que y x (—z) =1 [p] ou
encore y = (—z)" ' = —z 1. Ce qui démontre que yRz.
» Transitivité. Soient (z,7,2) € [1,p — 1]?, on suppose que zRy et yRz. Il y a 16 cas & considérer qui
peuvent étre résumés dans le tableau suivant.

Y=z Yy=—z y:z_l y:_z_l

— — _ _ 1 _ -1
=y =2z r=—-z |x==z2 T=—z
— _ _ _ 1 _ 1
Tr= -y Tr=—z rT=2z Tr=—z r=z
x—yfl z=z"1 |z=—271 =z Tr=—z
a::—yl t=—21] z=2"1 | z=—2 =2z

Dans tous les cas, on a xRz.

R est une relation d’équivalence I

(b) Soit = € [1,p — 1], par définition de la classe d’équivalence de z, on a : Cl(z) = {y € [1,p — 1], 2Ry}. On
a:

TRyS r=youzr=—youzx=y oux=—y '
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Ce qui démontre que :

(¢) » Pour p=11, 0n a:
e CI(1) = {1,-1,171, =171} = {1,10} car :

14+10=0[11] donc —1=10

Ix1=1[11]donc1'=1
—1'=-1=10[11] donc —17' =10

e Cl(2) ={2,9,6,5} car :

24+9=0][11]

2% 6=1][11]

9x5=1[11]
e CI(3) ={3,8,4,7} car :

3+8=0/[11]

3x4=1][11]

8x7=1[11]

Il y a trois classes d’équivalence : {1,10}, {2,9,6,5} et {3,8,4,7} I

» Pour p = 13, avec le méme type de calculs, on trouve :

qu’il y a quatre classes d’équivalence : {1,12}, {2,11,7,6}, {3,10,9,4} et {5,8}

3. (a) Soit z € [1,p— 1], on suppose que x = —z. Par définition de —x cela signifie que x +z = 0 [p]. C’est-a-dire
que p|2z, or p est impair donc il est premier avec 2, en vertu du théoreme de Gauss ceci entraine que p|z.

Ceci est absurde puisque = € [1,p — 1].
Ve e[l,p—1], x # —m'

(b) Soit z € [1,p — 1], on suppose que x = 2~ . Par définition de =~ cela signifie que 2 = 1 [p]. C’est-a-dire
que p|lz? — 1 = (z 4 1)(z — 1), comme p est premier ceci entraine que p|x + 1 ou p|z — 1.
» On a z+1 € [2,p] puisque z € [1,p — 1]. Ce qui démontre que si p|x + 1 alors z + 1 = p, c’est-a-dire

rz=p-—1.
»Onax—1¢€[0,p—2] puisque = € [1,p — 1]. Ce qui démontre que si p|z — 1 alors x — 1 = 0, c’est-a-dire
=1

Réciproquement, ona 1 x 1=1[p]et (p—1) x (p—1) =p*> —2p+1 =1 [p], ce qui démontre que si = = 1

ouz=p—1alorsz =2 .

Vee[l,p—1),z=a'or=1louz=p—1
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(¢) Soit z € [1,p — 1], on suppose que = —z~ . Par définition de —z ! cela signifie que —2* = 1 [p]. Deux
cas se présentent :
» Soit I’équation n’admet aucune solution appartenant a [1,p — 1].
» Soit ’équation admet une solution z¢ € [1,p — 1], c’est-a-dire que —z3 = 1 [p]. Considérons une solution
z€[l,p—1] de —z> =1 [p]. On a alors :

2= a3 [p] & o — 23 =0 [p] & (2 + 20)(z — 70) = 0 [p] & p|(z + 70) ( — o)
Comme p est premier, ceci implique que p|z + xg ou plx — xg. Or = + z¢ € [2,2p — 2], donc si p|x + xg
alors x + oy = p et par suite x = p — xo. D’autre part, x — z9 € [—(p — 2),p — 2], donc si p|z — x( alors
x — xg = 0 et par suite z = xg.
Les deux solutions trouvées dans ce cas : xg et p—xg = —x [p] sont bien distinctes car d’apres la question
(a), il n’est pas possible que z¢g = —xy.
En résumé :

six € [1,p — 1], alors I"équation = = —z~ ! admet 0 ou 2 solutions

(d) On sait que ’ensemble des classes d’équivalence pour la relation R forme une partition de 1’ensemble
[1,p — 1]. Chacune de ces classes d’équivalence possede 4 éléments =, —z, z7! et —z 7! sauf si certains de
ces éléments sont égaux :

» x = —x est impossible d’apres la question (a).
»z=2'<z=10ouz=p—1, dapres la question (b). Ce qui donne la classe {1,p — 1} qui est réduite

a deux éléments. Les éléments 1 et p — 1 forment bien une classe puisque 1+ (p — 1) =0 [p].

» © = —z ! posséde 0 ou 2 solutions d’apres la question (c). Dans le cas ot il y a deux solutions, nous
obtenons une classe a deux éléments : {xo, p—To}, en reprenant les notations de la question (c). C’est bien
une classe d’équivalence car —xg = 330 puisque g = — oL

» Les autres cas d’égalité entre éléments de la classe de x se rameénent a ces quatre cas-la puisque :

—x:x_1<:>:c:—a:_1, —r=-ztlor=cter = lor=—z

Cette étude démontre bien le résultat annoncé.

4. D’apres le résultat de la question 3.(d), 'ensemble [1, p— 1] est I'union des classes d’équivalence pour la relation
R. Comme les classes sont disjointes, on a en gardant les mémes notations que précédemment :

—1=4x k + 2 + éventuellement la classe {zg,p — x
p L 2 {mo,p — w0}
nombre de classes a 4 éléments la classe {1,p—1}

» Si p est congru a 1 modulo 4, alors I’écriture précédente montre que la classe optionnelle {xg,p — x¢} doit
apparaitre sinon p = 4k + 3. Or x¢ vérifie x% = —1 [p] et nous avons vu que cette équation a alors exactement
2 solutions, l'autre étant p — zg. Ce qui démontre le lemme dans le cas ou p = 1 [4].

» Si p est congru a 3 modulo 4, alors la classe {z,p — xo} n’apparait pas sinon p = 4k + 5 = 1 [4]. D’apres
la question 3.(c), cela signifie que I"équation x = —z7! n’a pas de solution. Cette équation étant équivalente &
2% = —1 [p] cela démontre le lemme dans le cas ot p = 3 [4].

Comme le cas p = 2 du lemme a été démontré a la question 1., on a achevé la démonstration de ce lemme 1.
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C-Nombres premiers somme de deux carrés

1. On a Card(T") = E(,/p) + 1. On rappelle que T'? est 1’ensemble des couples dont les deux coordonnées sont dans
I'. Nous avons E(,/p) + 1 choix pour la premiere coordonnée et E(,/p) + 1 choix pour la seconde coordonnée, ce

2
qui nous donne (E(\/f)) + 1) choix au total.

2.

7= Card(r?) = (B(v5) + 1)2

D’autre part, d’apres les propriétés usuelles de la partie entiere, on a : /p < E(y/p) + 1. Ce qui démontre que :

(a)

v>Pp
Soit s € Z. L’idée de la question est qu’il y a strictement plus de p couples dans I'?> mais qu'il y a p classes

de congruence modulo p, ce qui explique 1’égalité proposée. Pour le démontrer, on considere ’application :

o T2 = [0,p—1]
(x,y) = x—sy[p]

L’application ¢ n’est pas injective puisque le nombre d’éléments de ’ensemble de départ est strictement
plus grand que le nombre d’éléments de ’ensemble d’arrivée, ce qui implique que deux éléments ont la
méme image. 1l existe (z,y) € T? et (2',y’) € T? avec (z,y) # (2',y') tels que :

x—sy=a — sy [p]'

On sait que z et o’ appartiennent & [0, E(\/p)], on a :
0<z<E(/p) et —E(yp) <—2'<0
En sommant ces deux inégalités, on obtient :
~E(vp) <z -2’ <E(Vp)

Ce qui implique que T = |z — 2| < E(y/p) et par suite Z € [0,E(\/p)]. De méme 7 € [0,E(\/p)]. Ce qui
démontre que (z,7) € '

Enfin d’aprés la question précédente, nous avons z — sy = 2’ — sy’ [p] ce qui équivaut a x —2' = s(y—y') [p].
On prend la valeur absolue :

|z —2'| = +sly — /| [p] & T =esy [p] avec € € {—1,1}

3(z,79) €2, T=esy [p| avec € € {—1,1}

3. Dans cette partie, on a supposé que p est un nombre premier congru a 1 modulo 4. D’apres le lemme 1, il est
possible de choisir s € [1,p — 1] tel que s> = —1 [p]. Ainsi en élevant la relation de la question précédente au
carré, il vient :

2 = %92 [p] SP24+52=0 [p] <:>p\§:\2 + 72

Or z € I, c’est-a-dire que : 0 <7 < E(/p) et par suite 0 < 2 < E(\/;B)2 D’autre part E(,/p) < y/p puisque p
est un nombre premier donc il ne peut étre égal a un carré. Finalement :

0<z2<p



MPSI2 DM12 Mathématiques corrigé 2025-2026

De méme 0 < 72 < p et en sommant les deux inégalités précédentes, il vient : 0 < 2 + 72 < 2p. Enfin 22 et >
ne sont pas tous les deux nuls puisque (z,y) # (2’,%'), ce qui nous donne :

0<zZ2+7%<2p

Comme p|Z? + 72, on a nécessairement p = 72 + 7°.

Si p est un nombre premier congru a 1 modulo 4 alors p est la somme de deux carrés I

4. C’est un simple bilan des questions précédentes :

» Ona:2=12+12 donc 2 est la somme de deux carrés d’entiers naturels.

» Si p est un nombre premier congru a 1 modulo 4 alors p est la somme de deux carrés d’entiers naturels d’apres
la question précédente.

» Si p est un nombre premier congru a 3 modulo 4 alors p n’est pas la somme de deux carrés d’entiers naturels
d’apres la question 2. de la partie A.

Un nombre premier p est somme de deux carrés d’entiers naturels si et seulement si p =2 ou p =1 [4]

D-Entiers somme de deux carrés
1. On vérifie que :
mn = (22 +y?) (2 + u?) = 2262 + 2%® + % + y*u? = (ot + yu)? + (zu — yt)?

Il est clair que xt + yu € N par contre xu — yt est un entier relatif mais quitte a remplacer zu — yt par son
opposé on se ramene a la décomposition souhaitée. Finalement :

mn = (zt + yu)? + (|zu — yt|)?

2. Soit n un entier naturel qui est somme de deux carrés d’entiers naturels, ¢’est-a-dire qu’il existe (x,y) € N2 tels

quen=2z>+7% Ona:
nz? = (2% +9%)2% = (z2)? + (y2)?

nz? est la somme de deux carrés d’entiers naturels.

3. On a vu que 0 et 1 sont sommes de deux carrés. Soit n > 2, on peut décomposer n en facteurs premiers en
distinguant ceux congrus a 1 modulo 4 et ceux congrus a 3 modulo 4 :

e (M) < (119)
i=1

nombres premiers congrus a 1 modulo 4 pombres premiers congrus & 3 modulo 4

avec (k,r,s) € N3, (ai)i<i<r € N" et (B)1<j<s € N° sont des entiers pairs d’apres '’hypothese faite dans la
question.

On sait que 2 est somme de deux carrés et que pour tout i € [1,7], p; est somme de deux carrés. Or d’apres
la question 1., un produit d’entiers qui sont sommes de deux carrés est une somme de deux carrés, par une
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récurrence immédiate, on démontre qu’un produit quelconque d’entiers qui sont sommes de deux carrés est une

T
somme de deux carrés. Ainsi 2 x (H pf") est une somme de deux carrés. D’autre part, on a :

i=1

(jlfllqﬁ - (jflqu”z)z

D’apres la question précédente, comme n est le produit d’un entier qui est somme de deux carrés et d’'un carré
alors n est une somme de deux carrés.

4. (a)

Si pour tout nombre premier p congru a 3 modulo 4, v,(n) est pair alors n est somme de deux carrés

Comme p|n, on a 2+ =0 [p]. Si 'on suppose que x Z 0 [p], on sait que x possede un inverse modulo
p, d’apres la question 4. de la partie A, notons cet inverse w. En multipliant la relation 22 + y? = 0 [p] par
2 . . .
u”, il vient :
W+l =0 pl e 1+u?y? =0 [p] & (uy)? = -1 [p]

Cette derniére relation est absurde, d’apres le lemme 1, puisque p = 3 [4] par hypothese.

z =0 [p]

Par le méme raisonnement qu’a la question précédente, on a également y = 0 [p]. On a donc :
plz et ply ce qui implique p?|x? et p?|y? et par suite p?|z? + 3>

2|TL

p

n N 2 2
On an = z? +y? donc — = (—) + (g) . Nous avons vu dans la question 4.(a) que p divise z et p divise
p p p
x
1y, c’est-a~dire que — et Y sont des entiers naturels.
p p

n 7’ 9 .
— est une somme de deux carrés d’entiers naturels
p

On vient de démontrer que si p est un diviseur premier de n congru & 3 modulo 4 alors p? divise n. Il y a

deux cas a considérer :
. .. n PU . . . .
» Si p ne divise pas — alors p apparait a la puissance 2 dans la décomposition en facteurs premiers de n.
p

. .. . N . L L n . ,
» Si p divise n, on peut appliquer a nouveau le raisonnement précédent a — qui est également une somme
p

n
de deux carrés d’entiers naturels d’apres la question 4.(c). Ainsi p2]—2 donc p*|n.
b

On poursuit le raisonnement précédent ce qui démontre que p apparait a une puissance paire dans la
décomposition en facteurs premiers de n.

Si p =3 [4] et p|n alors vp(n) est pair
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k k
2
5. On a H p; qui est un nombre impair donc il est congru a 1 ou 3 modulo 4. Dans les deux cas (le) =1 [4]
i=1 i=1
et par suite My = 1 [4]. L’entier M}, est impair et supérieur & 2 donc il posseéde un facteur premier impair p. Le

k
2
nombre premier p n’est pas 'un des p; ou i € [1, k] car sinon p|My, et p| ( H pi> , ce qui implique en faisant la

i=1
différence que p|4. Ceci est absurde car p est impair.

On en déduit que tous les facteurs premiers de My sont supérieurs a pg. D’autre part My ne possede pas de
facteur premier congru a 3 modulo 4, en effet si tel était le cas d’apres la question 4.(a), on aurait ce facteur
premier qui diviserait 2; ce qui est absurde.

Finalement, pour tout entier naturel k, M} possede un facteur premier congru a 1 modulo 4 supérieur a pg.
Nous savons qu’il y a une infinité de nombres premiers donc klim pr = +o0o. Cette étude démontre qu’il y a
—+o00

des nombres premiers congrus a 1 modulo 4 aussi grands que 1’on veut.

Il y a une infinité de nombres premiers congrus a 3 modulo 4.

6. Soit x un entier naturel, on examine les différents cas modulo 8 :

z modulo 8 | 22 modulo 8
0 0
1 1
2 4
3 1
4 0
5 1
6 4
7 1

Si z, y et z sont trois entiers naturels, en examinant les différentes possibilités, on voit que I'on ne peut pas
avoir 2° + y* + 2% = 7 [8].

Un entier congru a 7 modulo 8 ne peut pas étre une somme de trois carrés d’entiers naturels I
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E-Une derniere surprise

from math import *

def estcarre(n):
"""renvoie 1 si n est un carré d'entier, 0 sinon"’
val = 0
for i in range(int(sqgrt(n)) + 2):
if 1 ** 2 == n:
val = 1
return(val)

def nbdecomp(n):
"""calcul le nombre de décomposition de n"'
nb = 0
for i in range(int(sqrt(n)) + 2):
ifn -1 ** 2 >= 02
nb = nb + estcarre(n - i ** 2)
return(nb)

def total(N):
return(l / ( N+ 1 ) * sum(nbdecomp(i) for i in range( N + 1)))
#0n lance 4*total(100000) pour trouver :

#3.1546084539154613

Dans ce programme, on a cherché les décompositions en tant que somme de deux carrés d’entiers naturels et on
a multiplié par 4 pour avoir le nombre total, en négligeant les cas ol 0 intervient dans la décomposition.

On peut démontrer que ce nombre moyen de décompositions tend vers 7.
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Théoreme de Lagrange

La question 1 de cet exercice vise a démontrer le théoréme de Lagrange. Joseph-Louis Lagrange est un mathématicien
italien (comme Cesaro) du X VIIIéme siécle, il a en fait démontré ce résultat dans un cas particulier de groupe, puisque
la notion générale de groupe n’est apparue que postérieurement. Le point clé de cette preuve est l'utilisation d’une
relation d’équivalence puis ’emploi du lien entre classe d’équivalence et partition.

1.

2.

A-Démonstration du théoréeme

Vérifions les trois propriétés qui caractérisent une relation d’équivalence.

e Réflexivité : Soit z € G, on a 2!

x = e € H puisque H est un sous-groupe de G, ceci montre que zRx.

e Symétrie : Soient (z,y) € G?, supposons que Ry et démontrons que yRz. Comme zRy, on a 'y € H
et comme H est un sous-groupe de G, (a/:_ly)_1 — y 'z est également dans H. Ce qui est la définition de yRax.
e Transitivité : Soient (z,y,z) € G3, on suppose que 2Ry et yRz, montrons que zRz. On a, par définition
de la relation binaire R, z 'y € H et y 'z € H. Comme H est un sous-groupe, il est stable par produit et ainsi

(z7'y)(y~'2) = 2712 € H. Ce qui est la définition de zRz.

On a démontré que :
R est une relation d’équivalence I

(a) Par définition la classe de a est I’ensemble des éléments de G qui sont en relation avec a. Pour tout a € G,
ona:

Cl(a) = {b € G, aRb}

(b) 11 est possible de démontrer 1’égalité proposée par double inclusion, ici on propose un raisonnement par
équivalence. Soit a € G, on a :

beClla) e aRbesa ' be HedreH ab=2c3xcH b=ar<bc {ax, v € H}

Ce qui démontre 1’égalité proposée :

Va € G, Cl(a) = {azx, x € H}

(a) Il est clair que pour tout a € G, l'application 7y, est bien définie puisque si x € H, on a évidemment
ax € {ax, x € H}.
La surjectivité est aussi claire. En effet prenons y € {ax, = € H}, il existe x € H tel que y = ax = v,(x),
ce qui montre que y a un antécédent par -y,.
Enfin pour l'injectivité, prenons (z,z’) € H? tels que

Yo(x) = 7a(2') © ax = az’ < = = 2’ en multipliant & droite par a "

Yo €st bijective.

(b) Deux ensembles finis qui sont en bijection ont le méme cardinal, en utilisant la question 2.(b), on a ainsi
pour tout a € G :

On a démontré que pour tout a € G :

Card(Cl(a)) = Card({az, x € H}) = Card(H)
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4. 11 faut se souvenir que les classes d’équivalence forment une partition de G. Comme ’ensemble G est fini, il y a un
nombre fini de classes d’équivalence pour la relation R, supposons qu’il y ait k classes d’équivalence ou k € N*.
D’apres I’étude menée a la question précédente, toutes ces classes d’équivalence ont le méme nombre d’éléments
le cardinal de H. Comme deux classes d’équivalence distinctes sont disjointes, on a alors kx Card(H) = Card(G).

1.

On a bien démontré le théoreme de Lagrange puisque :

Card(H)|Card(G)

. Notons Card(G) = p ou p est un nombre premier. Soit H un sous-groupe de G, d’apres I'étude précédente le

cardinal de H divise p. Cela implique que Card(H) = 1 ou Card(H) = p, distinguons les deux cas :

e si Card(H) = 1 étant donné que H contient I’élément neutre du groupe, c’est que H = {e}.

e si Card(H) = p, comme on a H C G et Card(G) = p cela implique que H = G.

(a)

Si Card(G) est un nombre premier alors les seuls sous-groupes de G sont G et {e}

B-Une application du théoreme

Supposons que ¢, soit injective, étant donné que G est fini, on sait d’apres le cours que N est fini et que
Card(N) < Card(G). Ceci est clairement absurde, donc :

(g N’est pas injective'

Par définition de la non-injectivité, il existe (n1,m2) € N? avec ny # ng tels que @q(n1) = @q(n2). Sans
perte de généralité supposons que n; > no, on a :

©a(n1) = pa(n2) & a™ =ad™ < a"a™™ =aa ™ S ad" T =e

On pose k = ny1 — ng € N*, ce qui montre que :

Va € G, 3k € N¥, ak:el

Soit a € G, l'ensemble {k € N*, at = e} est inclus dans N et il est non vide d’apres la question précédente.
Toute partie non vide de N admet un minimum donc :

Ord(a) existe

Par définition, on a bien pour tout a € G, H, C G. Vérifions les trois propriétés qui caractérisent un
sous-groupe.

eOnaa’=eccH,.
e Soient (z,y) € H2, montrons que 2y € H,. On a :

x € Hy < 3r€]0,0rd(a) — 1], z =a"

y € H, & 3s € [0,0rd(a) — 1], z = a°

On a ainsi 2y = a’** avec 7 + s € [0,20rd(a) — 2], deux cas sont & considérer :
e Sir+s € [0,0rd(a) — 1] alors, par définition de H,, on a : xy = a"* € H,,.



MPSI2 DM12 Mathématiques corrigé 2025-2026

e Sir+s € [Ord(a), 20rd(a) — 2] alors r 4 s —Ord(a) € [0,Ord(a) — 2], ceci implique que a"*~04(@) ¢
H,.

Ord(a)

En se souvenant que par définition de Ord(a), on a a = e, il vient :

Ty = a"ts = ar-i—se—l — " |:aOrd(a):| 1= ar+sa—0rd(a) _ ar-i—s—Ord(a) cH,

Ce qui démontre que H, est stable par produit.
e Prenons x € H, et démontrons que ! € H,. Si = e = a° le résultat est clair, prenons z # e, on a :

x € Hy < 3re[1,0rd(a) — 1], z =a"

Ord(a)

L’élément y = a ~" appartient & H, puisque Ord(a) —r € [1,Ord(a) — 1], montrons que c’est l'inverse

de x :

r Ord(a)—r _ ar+Ord(a)77‘ _ aOrd(a)

xy=aa =e

et par un calcul tout & fait similaire, on a : yz = e. Ceci montre que 2! =y = qOrd(@)=r,

H, est un sous-groupe de G I

(b) Montrons que le cardinal de H, est égal a Ord(a), il s’agit pour cela de montrer que pour k € [0, Ord(a)—1],
les éléments a” sont distincts. En effet supposons que a** = a*? avec (ki, ko) € [0,0rd(a) —1]% et ky > ko,
on ak; — ke € [1,0rd(a) — 1] et

ak‘lfkg — CLkl [akg]fl — akl [alﬂ]fl — aklfkl —e

Ceci contredit la minimalité de Ord(a).
En résumé H, est un sous-groupe de G, il posseéde Ord(a) éléments, d’apres le théoreme de Lagrange, on
en déduit que

Ord(a) divise n

3. D’apres la question précédente, il existe r € N* tel que Ord(a) x r =n. On a : a®rd@) = ¢ d'on

r
e—=¢ = [aOrd(a)} — aOrd(a)Xr =

Va € G, o®¥E) = ¢

Ce résultat généralise un exercice fait en cours qui démontrait cette formule dans le cas ot le groupe est com-
mutatif.

4. Soit G un groupe de cardinal p ol p est un nombre premier. Comme p > 2, il existe un élément dans G distinct
de I’élément neutre, notons-le a. D’apres la question 2.(b), Ord(a) est un diviseur de p, donc Ord(a) = 1 ou
Ord(a) = p. Le cas Ord(a) = 1 est a exclure puisque a # e, donc Ord(a) = p.

En utilisant la question 2.(a), on a H, qui est un sous-groupe de G de méme cardinal que G, c’est donc que
H, = G, c’est-a-dire que tous les éléments de G sont des puissances de a. On a alors :

V(z,y) € G%, 3(r,s) € [0,p—1], z =a" et y = a°

+s +r _ 8. T

=a°"" =a’a” = yx.

Un groupe de cardinal premier est commutatif.

On peut montrer, en développant les outils étudiés ici, qu’un groupe de cardinal p* ot p est un nombre premier
est également nécessairement commutatif.

Ceci donne zy = a"a® = a”




