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Pierre de Fermat est un magistrat français du XVII ième siècle, il est surnommé ”le prince des amateurs”. On
lui doit de nombreux résultats mathématiques, notamment en arithmétique. Il s’est également intéressé aux sciences
physiques avec le principe de Fermat en optique.

A-Préliminaires

1. On a les décompositions suivantes :

0 = 02 + 02 5 = 12 + 22 13 = 22 + 32

1 = 02 + 12 8 = 22 + 22 16 = 02 + 42

2 = 12 + 12 9 = 02 + 32 17 = 12 + 42

4 = 02 + 22 10 = 12 + 32 18 = 32 + 32

Par contre 3, 6, 7, 11, 12, 14 et 15 ne semblent pas s’écrire comme somme de deux carrés d’entiers naturels.

Il semble difficile, même avec ces quelques exemples, de trouver une règle générale pour savoir quels sont les
entiers qui s’écrivent comme somme de deux carrés d’entiers naturels.

2. Soit x ∈ N, examinons les valeurs possibles de x et x2 modulo 4. On a :

x modulo 4 x2 modulo 4

0 0
1 1
2 0
3 1

Ainsi si (x, y) ∈ N2, on a x2 + y2 qui peut être congru à 0, 1 ou 2 modulo 4. Ceci démontre que :

un entier congru à 3 modulo 4 ne peut pas s’écrire comme somme de deux carrés d’entiers naturels

Ce premier résultat permet d’expliquer que 3, 7, 11 et 15 ne sont pas somme de deux carrés d’entiers naturels.

3. (a) Démontrons le résultat par récurrence sur le nombre de facteurs dans le produit en question. Pour r ∈ N∗,
on considère :

Hr : Si (ti)1≤i≤r est une famille d’entiers congrus à 1 modulo 4 alors

r∏
i=1

ti est congru à 1 modulo 4

I Si r = 1, le résultat est évident.

I On suppose que Hr est vraie pour r ∈ N∗ fixé. Soit (ti)1≤i≤r+1 une famille de r + 1 entiers naturels
congrus à 1 modulo 4. En utilisant l’hypothèse de récurrence, on a :

r∏
i=1

ti ≡ 1 [4] et tr+1 ≡ 1 [4]

Par produit de ces deux congruences, il vient :

r+1∏
i=1

ti =
( r∏
i=1

ti

)
tr+1 ≡ 1× 1 [4]

Ce qui démontre que Hr+1 est vraie et achève la récurrence.

Un produit d’entiers naturels congrus à 1 modulo 4 est congru à 1 modulo 4
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(b) i. Remarquons que M est congru à 3 modulo 4 puisque :

M =
(

4

n∏
i=1

pi

)
− 1 ≡ 0− 1 ≡ 3 [4]

Par l’absurde supposons que M soit un nombre premier. Comme il est congru à 3 modulo 4, c’est l’un
des pi pour un certain i ∈ J1, nK. Ceci est absurde puisque M est clairement strictement supérieur à
chacun des pi où i ∈ J1, nK.

M n’est pas premier

ii. Le nombre M est impair, il se décompose comme un produit de facteurs premiers impairs. Si tous
les diviseurs premiers qui interviennent dans la décomposition de M sont congrus à 1 modulo 4 alors,
d’après la question (a), M est également congru à 1 modulo 4, ce qui n’est pas le cas.

M possède un diviseur premier congru à 3 modulo 4

iii. Le diviseur premier de M congru à 3 modulo 4 trouvé à la question précédente est l’un des (pi)1≤i≤n,
notons le pi0 où i0 ∈ J1, nK.
On a :

pi0

∣∣∣4 n∏
i=1

pi, c’est-à-dire pi0 |M + 1 et pi0 |M

Ainsi : pi0 |(M + 1 −M) ce qui est absurde. L’hypothèse selon laquelle P3,4 contient un nombre fini
d’éléments est fausse et par suite :

P3,4 est infini

4. I Existence. Soit p un nombre premier et a ∈ J1, p−1K. Les entiers a et p sont premiers entre eux, ce qui nous
permet d’appliquer le théorème de Bézout :

∃(û, v̂) ∈ Z2, tels que aû+ pv̂ = 1

En prenant cette relation modulo p cela donne aû ≡ 1 [p]. Cependant rien ne garantit que û convienne puisque
l’on ne sait pas si û ∈ J1, p − 1K. Pour contourner ce problème, on considère le reste de la division euclidienne
de û par p que l’on note u. On a û ≡ u [p], ainsi au ≡ 1 [p]. D’après le théorème de la division euclidienne, on
sait que u ∈ J0, p− 1K, mais u 6= 0 sinon au ≡ 0 [p]. Finalement u ∈ J1, p− 1K et au ≡ 1 [p].

I Unicité. Soient (u, u′) ∈ J1, p − 1K2 tels que au ≡ 1 [p] et au′ ≡ 1 [p]. On a : au ≡ au′ [p], c’est-à-dire
a(u − u′) ≡ 0 [p]. Ainsi p|a(u − u′) mais p est premier avec a, ce qui implique via le théorème de Gauss que
p|u− u′. Cependant :

1 ≤ u ≤ p− 1 et 1 ≤ u′ ≤ p− 1 implique que − (p− 2) ≤ u− u′ ≤ p− 2

En résumé u−u′ est un multiple de p et u−u′ ∈ J−(p−2), p−2K, nécessairement u−u′ = 0, c’est-à-dire u = u′.
Ce qui démontre l’unicité.

Si p est premier : pour tout a ∈ J1, p− 1K, a possède un unique inverse modulo p

5. I Existence. Soit p un nombre premier et a ∈ J1, p − 1K. On va voir que t = p − a répond à la question, en
effet :

t+ a = p− a+ a = p ≡ 0 [p]
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et t ∈ J1, p− 1K puisque :
1 ≤ a ≤ p− 1⇔ 1 ≤ p− a ≤ p− 1

I Unicité. Soient (t, t′) ∈ J1, p−1K2 tels que a+ t ≡ 0 [p] et a+ t′ ≡ 0 [p]. On a t+a ≡ t′+a [p] ce qui implique
que t ≡ t′ [p]. Or t et t′ sont deux éléments de J1, p− 1K donc t = t′. Ce qui démontre l’unicité.

Si p est premier : pour tout a ∈ J1, p− 1K, a possède un unique opposé modulo p

B-Une équation modulaire

1. Si p = 2, on a : J1, p− 1K = {1} et 12 = 1 ≡ −1 [2]. Ce qui démontre le lemme 1 dans le cas où p = 2.

2. (a) Observons d’abord que si y ∈ J1, p−1K alors −y, y−1 et −y−1 sont définis de façon unique et appartiennent
à J1, p−1K d’après les questions 4. et 5. de la partie précédente. Vérifions les propriétés requises pour avoir
une relation d’équivalence.

I Réflexivité. Soit x ∈ J1, p− 1K, on a xRx puisque x = x. La relation binaire R est réflexive.

I Symétrie. Soient (x, y) ∈ J1, p− 1K2, tels que xRy. Il y a 4 cas qui peuvent se présenter :

• Si x = y alors y = x et par suite yRx.

• Si x = −y, en revenant à la définition de l’opposé donnée dans la question 5. de la partie
précédente, on a x+ y ≡ 0 [p], c’est-à-dire y + x ≡ 0 [p]. Ce qui démontre que y = −x et par suite yRx.

• Si x = y−1, en revenant à la définition de l’inverse donnée dans la question 4. de la partie
précédente, on a xy ≡ 1 [p], c’est-à-dire yx ≡ 1 [p]. Ce qui démontre que y = x−1 et par suite yRx.

• Si x = −y−1, on a x + y−1 ≡ 0 [p] donc y−1 = −x. Ceci implique que y × (−x) ≡ 1 [p] ou
encore y = (−x)−1 = −x−1. Ce qui démontre que yRx.

I Transitivité. Soient (x, y, z) ∈ J1, p − 1K3, on suppose que xRy et yRz. Il y a 16 cas à considérer qui
peuvent être résumés dans le tableau suivant.

y = z y = −z y = z−1 y = −z−1

x = y x = z x = −z x = z−1 x = −z−1

x = −y x = −z x = z x = −z1 x = z−1

x = y−1 x = z−1 x = −z−1 x = z x = −z

x = −y1 x = −z−1 x = z−1 x = −z x = z

Dans tous les cas, on a xRz.
R est une relation d’équivalence

(b) Soit x ∈ J1, p− 1K, par définition de la classe d’équivalence de x, on a : Cl(x) = {y ∈ J1, p− 1K, xRy}. On
a :

xRy ⇔ x = y ou x = −y ou x = y−1 ou x = −y−1
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Ce qui démontre que :

Cl(x) = {x,−x, x−1,−x−1}

(c) I Pour p = 11, on a :

• Cl(1) = {1,−1, 1−1,−1−1} = {1, 10} car :

1 + 10 ≡ 0 [11] donc − 1 = 10

1× 1 ≡ 1 [11] donc 1−1 = 1

−1−1 ≡ −1 ≡ 10 [11] donc − 1−1 = 10

• Cl(2) = {2, 9, 6, 5} car :
2 + 9 ≡ 0 [11]

2× 6 ≡ 1 [11]

9× 5 ≡ 1 [11]

• Cl(3) = {3, 8, 4, 7} car :
3 + 8 ≡ 0 [11]

3× 4 ≡ 1 [11]

8× 7 ≡ 1 [11]

Il y a trois classes d’équivalence : {1, 10}, {2, 9, 6, 5} et {3, 8, 4, 7}

I Pour p = 13, avec le même type de calculs, on trouve :

qu’il y a quatre classes d’équivalence : {1, 12}, {2, 11, 7, 6}, {3, 10, 9, 4} et {5, 8}

3. (a) Soit x ∈ J1, p−1K, on suppose que x = −x. Par définition de −x cela signifie que x+x ≡ 0 [p]. C’est-à-dire
que p|2x, or p est impair donc il est premier avec 2, en vertu du théorème de Gauss ceci entrâıne que p|x.
Ceci est absurde puisque x ∈ J1, p− 1K.

∀x ∈ J1, p− 1K, x 6= −x

(b) Soit x ∈ J1, p− 1K, on suppose que x = x−1. Par définition de x−1 cela signifie que x2 ≡ 1 [p]. C’est-à-dire
que p|x2 − 1 = (x+ 1)(x− 1), comme p est premier ceci entrâıne que p|x+ 1 ou p|x− 1.

I On a x + 1 ∈ J2, pK puisque x ∈ J1, p − 1K. Ce qui démontre que si p|x + 1 alors x + 1 = p, c’est-à-dire
x = p− 1.

IOn a x− 1 ∈ J0, p− 2K puisque x ∈ J1, p− 1K. Ce qui démontre que si p|x− 1 alors x− 1 = 0, c’est-à-dire
x = 1.

Réciproquement, on a 1× 1 ≡ 1 [p] et (p− 1)× (p− 1) = p2 − 2p+ 1 ≡ 1 [p], ce qui démontre que si x = 1
ou x = p− 1 alors x = x−1.

∀x ∈ J1, p− 1K, x = x−1 ⇔ x = 1 ou x = p− 1
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(c) Soit x ∈ J1, p− 1K, on suppose que x = −x−1. Par définition de −x−1 cela signifie que −x2 ≡ 1 [p]. Deux
cas se présentent :

I Soit l’équation n’admet aucune solution appartenant à J1, p− 1K.
I Soit l’équation admet une solution x0 ∈ J1, p−1K, c’est-à-dire que −x2

0 ≡ 1 [p]. Considérons une solution
x ∈ J1, p− 1K de −x2 ≡ 1 [p]. On a alors :

x2 ≡ x2
0 [p]⇔ x2 − x2

0 ≡ 0 [p]⇔ (x+ x0)(x− x0) ≡ 0 [p]⇔ p|(x+ x0)(x− x0)

Comme p est premier, ceci implique que p|x + x0 ou p|x − x0. Or x + x0 ∈ J2, 2p − 2K, donc si p|x + x0

alors x + x0 = p et par suite x = p − x0. D’autre part, x − x0 ∈ J−(p − 2), p − 2K, donc si p|x − x0 alors
x− x0 = 0 et par suite x = x0.

Les deux solutions trouvées dans ce cas : x0 et p−x0 ≡ −x0 [p] sont bien distinctes car d’après la question
(a), il n’est pas possible que x0 = −x0.

En résumé :

si x ∈ J1, p− 1K, alors l’équation x = −x−1 admet 0 ou 2 solutions

(d) On sait que l’ensemble des classes d’équivalence pour la relation R forme une partition de l’ensemble
J1, p− 1K. Chacune de ces classes d’équivalence possède 4 éléments x, −x, x−1 et −x−1 sauf si certains de
ces éléments sont égaux :

I x = −x est impossible d’après la question (a).

I x = x−1 ⇔ x = 1 ou x = p− 1, d’après la question (b). Ce qui donne la classe {1, p− 1} qui est réduite
à deux éléments. Les éléments 1 et p− 1 forment bien une classe puisque 1 + (p− 1) ≡ 0 [p].

I x = −x−1 possède 0 ou 2 solutions d’après la question (c). Dans le cas où il y a deux solutions, nous
obtenons une classe à deux éléments : {x0, p−x0}, en reprenant les notations de la question (c). C’est bien
une classe d’équivalence car −x0 = x−1

0 puisque x0 = −x−1
0 .

I Les autres cas d’égalité entre éléments de la classe de x se ramènent à ces quatre cas-là puisque :

−x = x−1 ⇔ x = −x−1, −x = −x−1 ⇔ x = x−1 et x−1 = −x−1 ⇔ x = −x

Cette étude démontre bien le résultat annoncé.

4. D’après le résultat de la question 3.(d), l’ensemble J1, p−1K est l’union des classes d’équivalence pour la relation
R. Comme les classes sont disjointes, on a en gardant les mêmes notations que précédemment :

p− 1 = 4× k︸︷︷︸
nombre de classes à 4 éléments

+ 2︸︷︷︸
la classe {1,p−1}

+ éventuellement la classe {x0, p− x0}

I Si p est congru à 1 modulo 4, alors l’écriture précédente montre que la classe optionnelle {x0, p − x0} doit
apparâıtre sinon p = 4k + 3. Or x0 vérifie x2

0 ≡ −1 [p] et nous avons vu que cette équation a alors exactement
2 solutions, l’autre étant p− x0. Ce qui démontre le lemme dans le cas où p ≡ 1 [4].

I Si p est congru à 3 modulo 4, alors la classe {x0, p − x0} n’apparâıt pas sinon p = 4k + 5 ≡ 1 [4]. D’après
la question 3.(c), cela signifie que l’équation x = −x−1 n’a pas de solution. Cette équation étant équivalente à
x2 ≡ −1 [p] cela démontre le lemme dans le cas où p ≡ 3 [4].

Comme le cas p = 2 du lemme a été démontré à la question 1., on a achevé la démonstration de ce lemme 1.
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C-Nombres premiers somme de deux carrés

1. On a Card(Γ) = E(
√
p) + 1. On rappelle que Γ2 est l’ensemble des couples dont les deux coordonnées sont dans

Γ. Nous avons E(
√
p) + 1 choix pour la première coordonnée et E(

√
p) + 1 choix pour la seconde coordonnée, ce

qui nous donne
(

E(
√
p) + 1

)2
choix au total.

γ = Card(Γ2) =
(

E(
√
p) + 1

)2

D’autre part, d’après les propriétés usuelles de la partie entière, on a :
√
p < E(

√
p) + 1. Ce qui démontre que :

γ > p

2. (a) Soit s ∈ Z. L’idée de la question est qu’il y a strictement plus de p couples dans Γ2 mais qu’il y a p classes
de congruence modulo p, ce qui explique l’égalité proposée. Pour le démontrer, on considère l’application :

ϕ : Γ2 → J0, p− 1K
(x, y) 7→ x− sy [p]

L’application ϕ n’est pas injective puisque le nombre d’éléments de l’ensemble de départ est strictement
plus grand que le nombre d’éléments de l’ensemble d’arrivée, ce qui implique que deux éléments ont la
même image. Il existe (x, y) ∈ Γ2 et (x′, y′) ∈ Γ2 avec (x, y) 6= (x′, y′) tels que :

x− sy ≡ x′ − sy′ [p]

(b) On sait que x et x′ appartiennent à J0,E(
√
p)K, on a :

0 ≤ x ≤ E(
√
p) et − E(

√
p) ≤ −x′ ≤ 0

En sommant ces deux inégalités, on obtient :

−E(
√
p) ≤ x− x′ ≤ E(

√
p)

Ce qui implique que x̂ = |x − x′| ≤ E(
√
p) et par suite x̂ ∈ J0,E(

√
p)K. De même ŷ ∈ J0,E(

√
p)K. Ce qui

démontre que (x̂, ŷ) ∈ Γ2.

Enfin d’après la question précédente, nous avons x−sy ≡ x′−sy′ [p] ce qui équivaut à x−x′ ≡ s(y−y′) [p].
On prend la valeur absolue :

|x− x′| ≡ ±s|y − y′| [p]⇔ x̂ ≡ εsŷ [p] avec ε ∈ {−1, 1}

∃(x̂, ŷ) ∈ Γ2, x̂ ≡ εsŷ [p] avec ε ∈ {−1, 1}

3. Dans cette partie, on a supposé que p est un nombre premier congru à 1 modulo 4. D’après le lemme 1, il est
possible de choisir s ∈ J1, p − 1K tel que s2 ≡ −1 [p]. Ainsi en élevant la relation de la question précédente au
carré, il vient :

x̂2 ≡ s2ŷ2 [p]⇔ x̂2 + ŷ2 ≡ 0 [p]⇔ p|x̂2 + ŷ2

Or x̂ ∈ Γ, c’est-à-dire que : 0 ≤ x̂ ≤ E(
√
p) et par suite 0 ≤ x̂2 ≤ E(

√
p)2. D’autre part E(

√
p) <

√
p puisque p

est un nombre premier donc il ne peut être égal à un carré. Finalement :

0 ≤ x̂2 < p
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De même 0 ≤ ŷ2 < p et en sommant les deux inégalités précédentes, il vient : 0 ≤ x̂2 + ŷ2 < 2p. Enfin x̂2 et ŷ2

ne sont pas tous les deux nuls puisque (x, y) 6= (x′, y′), ce qui nous donne :

0 < x̂2 + ŷ2 < 2p

Comme p|x̂2 + ŷ2, on a nécessairement p = x̂2 + ŷ2.

Si p est un nombre premier congru à 1 modulo 4 alors p est la somme de deux carrés

4. C’est un simple bilan des questions précédentes :

I On a : 2 = 12 + 12, donc 2 est la somme de deux carrés d’entiers naturels.

I Si p est un nombre premier congru à 1 modulo 4 alors p est la somme de deux carrés d’entiers naturels d’après
la question précédente.

I Si p est un nombre premier congru à 3 modulo 4 alors p n’est pas la somme de deux carrés d’entiers naturels
d’après la question 2. de la partie A.

Un nombre premier p est somme de deux carrés d’entiers naturels si et seulement si p = 2 ou p ≡ 1 [4]

D-Entiers somme de deux carrés

1. On vérifie que :

mn = (x2 + y2)(t2 + u2) = x2t2 + x2u2 + y2t2 + y2u2 = (xt+ yu)2 + (xu− yt)2

Il est clair que xt + yu ∈ N par contre xu − yt est un entier relatif mais quitte à remplacer xu − yt par son
opposé on se ramène à la décomposition souhaitée. Finalement :

mn = (xt+ yu)2 + (|xu− yt|)2

2. Soit n un entier naturel qui est somme de deux carrés d’entiers naturels, c’est-à-dire qu’il existe (x, y) ∈ N2 tels
que n = x2 + y2. On a :

nz2 = (x2 + y2)z2 = (xz)2 + (yz)2

nz2 est la somme de deux carrés d’entiers naturels

3. On a vu que 0 et 1 sont sommes de deux carrés. Soit n ≥ 2, on peut décomposer n en facteurs premiers en
distinguant ceux congrus à 1 modulo 4 et ceux congrus à 3 modulo 4 :

n = 2k ×
( r∏
i=1

pαi
i

)
︸ ︷︷ ︸

nombres premiers congrus à 1 modulo 4

×
( s∏
j=1

q
βj
j

)
︸ ︷︷ ︸

nombres premiers congrus à 3 modulo 4

avec (k, r, s) ∈ N3, (αi)1≤i≤r ∈ Nr et (β)1≤j≤s ∈ Ns sont des entiers pairs d’après l’hypothèse faite dans la
question.

On sait que 2 est somme de deux carrés et que pour tout i ∈ J1, rK, pi est somme de deux carrés. Or d’après
la question 1., un produit d’entiers qui sont sommes de deux carrés est une somme de deux carrés, par une
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récurrence immédiate, on démontre qu’un produit quelconque d’entiers qui sont sommes de deux carrés est une

somme de deux carrés. Ainsi 2k ×
( r∏
i=1

pαi
i

)
est une somme de deux carrés. D’autre part, on a :

( s∏
j=1

q
βj
j

)
=
( s∏
j=1

q
βj/2
j

)2

D’après la question précédente, comme n est le produit d’un entier qui est somme de deux carrés et d’un carré
alors n est une somme de deux carrés.

Si pour tout nombre premier p congru à 3 modulo 4, νp(n) est pair alors n est somme de deux carrés

4. (a) Comme p|n, on a x2 + y2 ≡ 0 [p]. Si l’on suppose que x 6≡ 0 [p], on sait que x possède un inverse modulo
p, d’après la question 4. de la partie A, notons cet inverse u. En multipliant la relation x2 + y2 ≡ 0 [p] par
u2, il vient :

u2x2 + u2y2 ≡ 0 [p]⇔ 1 + u2y2 ≡ 0 [p]⇔ (uy)2 ≡ −1 [p]

Cette dernière relation est absurde, d’après le lemme 1, puisque p ≡ 3 [4] par hypothèse.

x ≡ 0 [p]

(b) Par le même raisonnement qu’à la question précédente, on a également y ≡ 0 [p]. On a donc :

p|x et p|y ce qui implique p2|x2 et p2|y2 et par suite p2|x2 + y2

p2|n

(c) On a n = x2 + y2 donc
n

p2
=
(x
p

)2
+
(y
p

)2
. Nous avons vu dans la question 4.(a) que p divise x et p divise

y, c’est-à-dire que
x

p
et
y

p
sont des entiers naturels.

n

p2
est une somme de deux carrés d’entiers naturels

(d) On vient de démontrer que si p est un diviseur premier de n congru à 3 modulo 4 alors p2 divise n. Il y a
deux cas à considérer :

I Si p ne divise pas
n

p2
alors p apparâıt à la puissance 2 dans la décomposition en facteurs premiers de n.

I Si p divise n, on peut appliquer à nouveau le raisonnement précédent à
n

p2
qui est également une somme

de deux carrés d’entiers naturels d’après la question 4.(c). Ainsi p2| n
p2

donc p4|n.

On poursuit le raisonnement précédent ce qui démontre que p apparâıt à une puissance paire dans la
décomposition en facteurs premiers de n.

Si p ≡ 3 [4] et p|n alors νp(n) est pair
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5. On a

k∏
i=1

pi qui est un nombre impair donc il est congru à 1 ou 3 modulo 4. Dans les deux cas
( k∏
i=1

pi

)2
≡ 1 [4]

et par suite Mk ≡ 1 [4]. L’entier Mk est impair et supérieur à 2 donc il possède un facteur premier impair p. Le

nombre premier p n’est pas l’un des pi où i ∈ J1, kK car sinon p|Mk et p|
( k∏
i=1

pi

)2
, ce qui implique en faisant la

différence que p|4. Ceci est absurde car p est impair.

On en déduit que tous les facteurs premiers de Mk sont supérieurs à pk. D’autre part Mk ne possède pas de
facteur premier congru à 3 modulo 4, en effet si tel était le cas d’après la question 4.(a), on aurait ce facteur
premier qui diviserait 2 ; ce qui est absurde.

Finalement, pour tout entier naturel k, Mk possède un facteur premier congru à 1 modulo 4 supérieur à pk.
Nous savons qu’il y a une infinité de nombres premiers donc lim

k→+∞
pk = +∞. Cette étude démontre qu’il y a

des nombres premiers congrus à 1 modulo 4 aussi grands que l’on veut.

Il y a une infinité de nombres premiers congrus à 3 modulo 4

6. Soit x un entier naturel, on examine les différents cas modulo 8 :

x modulo 8 x2 modulo 8

0 0
1 1
2 4
3 1
4 0
5 1
6 4
7 1

Si x, y et z sont trois entiers naturels, en examinant les différentes possibilités, on voit que l’on ne peut pas
avoir x2 + y2 + z2 ≡ 7 [8].

Un entier congru à 7 modulo 8 ne peut pas être une somme de trois carrés d’entiers naturels
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E-Une dernière surprise

Dans ce programme, on a cherché les décompositions en tant que somme de deux carrés d’entiers naturels et on
a multiplié par 4 pour avoir le nombre total, en négligeant les cas où 0 intervient dans la décomposition.

On peut démontrer que ce nombre moyen de décompositions tend vers π.
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Théorème de Lagrange

La question 1 de cet exercice vise à démontrer le théorème de Lagrange. Joseph-Louis Lagrange est un mathématicien
italien (comme Cesàro) du XVIIIème siècle, il a en fait démontré ce résultat dans un cas particulier de groupe, puisque
la notion générale de groupe n’est apparue que postérieurement. Le point clé de cette preuve est l’utilisation d’une
relation d’équivalence puis l’emploi du lien entre classe d’équivalence et partition.

A-Démonstration du théorème

1. Vérifions les trois propriétés qui caractérisent une relation d’équivalence.

• Réflexivité : Soit x ∈ G, on a x−1x = e ∈ H puisque H est un sous-groupe de G, ceci montre que xRx.

• Symétrie : Soient (x, y) ∈ G2, supposons que xRy et démontrons que yRx. Comme xRy, on a x−1y ∈ H
et comme H est un sous-groupe de G, (x−1y)−1 = y−1x est également dans H. Ce qui est la définition de yRx.

• Transitivité : Soient (x, y, z) ∈ G3, on suppose que xRy et yRz, montrons que xRz. On a, par définition
de la relation binaire R, x−1y ∈ H et y−1z ∈ H. Comme H est un sous-groupe, il est stable par produit et ainsi
(x−1y)(y−1z) = x−1z ∈ H. Ce qui est la définition de xRz.
On a démontré que :

R est une relation d’équivalence

2. (a) Par définition la classe de a est l’ensemble des éléments de G qui sont en relation avec a. Pour tout a ∈ G,
on a :

Cl(a) = {b ∈ G, aRb}

(b) Il est possible de démontrer l’égalité proposée par double inclusion, ici on propose un raisonnement par
équivalence. Soit a ∈ G, on a :

b ∈ Cl(a)⇔ aRb⇔ a−1b ∈ H ⇔ ∃x ∈ H, a−1b = x⇔ ∃x ∈ H, b = ax⇔ b ∈ {ax, x ∈ H}

Ce qui démontre l’égalité proposée :

∀a ∈ G, Cl(a) = {ax, x ∈ H}

3. (a) Il est clair que pour tout a ∈ G, l’application γa est bien définie puisque si x ∈ H, on a évidemment
ax ∈ {ax, x ∈ H}.
La surjectivité est aussi claire. En effet prenons y ∈ {ax, x ∈ H}, il existe x ∈ H tel que y = ax = γa(x),
ce qui montre que y a un antécédent par γa.

Enfin pour l’injectivité, prenons (x, x′) ∈ H2 tels que

γa(x) = γa(x
′)⇔ ax = ax′ ⇔ x = x′ en multipliant à droite par a−1

On a démontré que pour tout a ∈ G :

γa est bijective

(b) Deux ensembles finis qui sont en bijection ont le même cardinal, en utilisant la question 2.(b), on a ainsi
pour tout a ∈ G :

Card(Cl(a)) = Card({ax, x ∈ H}) = Card(H)
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4. Il faut se souvenir que les classes d’équivalence forment une partition de G. Comme l’ensemble G est fini, il y a un
nombre fini de classes d’équivalence pour la relation R, supposons qu’il y ait k classes d’équivalence où k ∈ N∗.
D’après l’étude menée à la question précédente, toutes ces classes d’équivalence ont le même nombre d’éléments
le cardinal de H. Comme deux classes d’équivalence distinctes sont disjointes, on a alors k×Card(H) = Card(G).

On a bien démontré le théorème de Lagrange puisque :

Card(H)|Card(G)

5. Notons Card(G) = p où p est un nombre premier. Soit H un sous-groupe de G, d’après l’étude précédente le
cardinal de H divise p. Cela implique que Card(H) = 1 ou Card(H) = p, distinguons les deux cas :

• si Card(H) = 1 étant donné que H contient l’élément neutre du groupe, c’est que H = {e}.
• si Card(H) = p, comme on a H ⊂ G et Card(G) = p cela implique que H = G.

Si Card(G) est un nombre premier alors les seuls sous-groupes de G sont G et {e}

B-Une application du théorème

1. (a) Supposons que ϕa soit injective, étant donné que G est fini, on sait d’après le cours que N est fini et que
Card(N) ≤ Card(G). Ceci est clairement absurde, donc :

ϕa n’est pas injective

(b) Par définition de la non-injectivité, il existe (n1, n2) ∈ N2 avec n1 6= n2 tels que ϕa(n1) = ϕa(n2). Sans
perte de généralité supposons que n1 > n2, on a :

ϕa(n1) = ϕa(n2)⇔ an1 = an2 ⇔ an1a−n2 = an2a−n2 ⇔ an1−n2 = e

On pose k = n1 − n2 ∈ N∗, ce qui montre que :

∀a ∈ G, ∃k ∈ N∗, ak = e

(c) Soit a ∈ G, l’ensemble {k ∈ N∗, ak = e} est inclus dans N et il est non vide d’après la question précédente.
Toute partie non vide de N admet un minimum donc :

Ord(a) existe

2. (a) Par définition, on a bien pour tout a ∈ G, Ha ⊂ G. Vérifions les trois propriétés qui caractérisent un
sous-groupe.

• On a a0 = e ∈ Ha.

• Soient (x, y) ∈ H2
a , montrons que xy ∈ Ha. On a :

x ∈ Ha ⇔ ∃r ∈ J0,Ord(a)− 1K, x = ar

y ∈ Ha ⇔ ∃s ∈ J0,Ord(a)− 1K, x = as

On a ainsi xy = ar+s avec r + s ∈ J0, 2Ord(a)− 2K, deux cas sont à considérer :

• Si r + s ∈ J0,Ord(a)− 1K alors, par définition de Ha, on a : xy = ar+s ∈ Ha.
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• Si r+s ∈ JOrd(a), 2Ord(a)−2K alors r+s−Ord(a) ∈ J0,Ord(a)−2K, ceci implique que ar+s−Ord(a) ∈
Ha.

En se souvenant que par définition de Ord(a), on a aOrd(a) = e, il vient :

xy = ar+s = ar+se−1 = ar+s
[
aOrd(a)

]
−1 = ar+sa−Ord(a) = ar+s−Ord(a) ∈ Ha

Ce qui démontre que Ha est stable par produit.

• Prenons x ∈ Ha et démontrons que x−1 ∈ Ha. Si x = e = a0 le résultat est clair, prenons x 6= e, on a :

x ∈ Ha ⇔ ∃r ∈ J1,Ord(a)− 1K, x = ar

L’élément y = aOrd(a)−r appartient à Ha puisque Ord(a)− r ∈ J1,Ord(a)− 1K, montrons que c’est l’inverse
de x :

xy = araOrd(a)−r = ar+Ord(a)−r = aOrd(a) = e

et par un calcul tout à fait similaire, on a : yx = e. Ceci montre que x−1 = y = aOrd(a)−r.

Ha est un sous-groupe de G

(b) Montrons que le cardinal de Ha est égal à Ord(a), il s’agit pour cela de montrer que pour k ∈ J0,Ord(a)−1K,
les éléments ak sont distincts. En effet supposons que ak1 = ak2 avec (k1, k2) ∈ J0,Ord(a)− 1K2 et k1 > k2,
on a k1 − k2 ∈ J1,Ord(a)− 1K et

ak1−k2 = ak1 [ak2 ]−1 = ak1 [ak1 ]−1 = ak1−k1 = e

Ceci contredit la minimalité de Ord(a).

En résumé Ha est un sous-groupe de G, il possède Ord(a) éléments, d’après le théorème de Lagrange, on
en déduit que

Ord(a) divise n

3. D’après la question précédente, il existe r ∈ N∗ tel que Ord(a)× r = n. On a : aOrd(a) = e, d’où

e = er =
[
aOrd(a)

]r
= aOrd(a)×r = an

∀a ∈ G, aCard(G) = e

Ce résultat généralise un exercice fait en cours qui démontrait cette formule dans le cas où le groupe est com-
mutatif.

4. Soit G un groupe de cardinal p où p est un nombre premier. Comme p ≥ 2, il existe un élément dans G distinct
de l’élément neutre, notons-le a. D’après la question 2.(b), Ord(a) est un diviseur de p, donc Ord(a) = 1 ou
Ord(a) = p. Le cas Ord(a) = 1 est à exclure puisque a 6= e, donc Ord(a) = p.

En utilisant la question 2.(a), on a Ha qui est un sous-groupe de G de même cardinal que G, c’est donc que
Ha = G, c’est-à-dire que tous les éléments de G sont des puissances de a. On a alors :

∀(x, y) ∈ G2, ∃(r, s) ∈ J0, p− 1K, x = ar et y = as

Ceci donne xy = aras = ar+s = as+r = asar = yx.

Un groupe de cardinal premier est commutatif

On peut montrer, en développant les outils étudiés ici, qu’un groupe de cardinal p2 où p est un nombre premier
est également nécessairement commutatif.


