Exercice 1

Pour tout $n \in \mathbb{N}$, on pose :

$$u_n = \int_1^e \frac{(\ln(x))^n}{x^2} dx$$

- 1. Montrer que pour $n \in \mathbb{N}$, u_n est bien définie et calculer u_0 .
- 2. (a) Montrer que pour tout $n \in \mathbb{N}$:

$$u_n = \int_0^1 t^n e^{-t} dt$$

- (b) Pour $n \in \mathbb{N}$, calculer $A_n = \int_0^1 t^n dt$.
- (c) En déduire que pour tout $n \in \mathbb{N}$, $0 \le u_n \le \frac{1}{n+1}$.
- (d) Déterminer la limite de (u_n) .
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = (n+1)u_n \frac{1}{e}$.
 - (b) En déduire la valeur de u_1 .
- 4. (a) Montrer que pour tout $n \in \mathbb{N}$, il existe $b_n \in \mathbb{N}^*$ vérifiant $u_n = n! \frac{b_n}{e}$.
 - (b) Déterminer les limites des suites (b_n) , $(\frac{b_n}{n!})$ et $(\frac{n!}{b_n})$.

Pour la question 5., on admet que pour tout $n \in \mathbb{N}$, $b_{n+1} = 1 + (n+1)b_n$.

- 5. (a) Préciser les valeurs de b_0 , b_1 et b_2 .
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $b_n = n! \sum_{k=0}^{n} \frac{1}{k!}$.
 - (c) En déduire que pour tout $n \geq 2$, $b_n \geq 2 \times n!$.
 - (d) Montrer que pour tout $n \ge 2$, $0 \le \frac{n!}{b_n} \frac{1}{e} \le \frac{1}{2 \times (n+1)!}$.
 - (e) En remarquant que pour n = 4, on a $2 \times (n+1)! > 100$, déterminer un rationnel qui donne une approximation de $\frac{1}{e}$ à 10^{-2} près.

Exercice 2

On considère la fonction f définie sur l'intervalle $I = [0, \pi]$ par $f(x) = \frac{\sin x}{\sqrt{5 - 4\cos x}}$. Le but de l'exercice est de trouver une expression de la bijection réciproque de f restreinte à $\left[0, \frac{\pi}{3}\right]$.

- 1. (a) Vérifier que f est définie sur I.
 - (b) Etudier le signe de $f(x) \sin x$ sur l'intervalle I.
 - (c) Montrer que : $\forall x \in]0, \pi], \sin x < x$.
 - (d) En déduire les solutions de l'équation f(x) = x sur l'intervalle I.
- 2. Etudier les variations de f sur l'intervalle I, calculer $f(\pi/3)$, f'(0) et $f'(\pi)$ et tracer son graphe. On pourra écrire f'(x) sous la forme $\frac{\alpha(\cos(x)-\beta)(\cos(x)-\gamma)}{(5-4\cos(x))^{\frac{3}{2}}}$ où α , β et γ sont des réels à déterminer.
- 3. On considère la fonction g définie sur I par :

$$g(x) = \arccos\left(\frac{4 - 5\cos x}{5 - 4\cos x}\right)$$

(a) Etudier les variations de la fonction :

$$\begin{array}{cccc} \varphi & : & [-1,1] & \to & \mathbb{R} \\ & t & \mapsto & \frac{4-5t}{5-4t} \end{array}$$

En déduire que φ réalise une bijection de [-1,1] dans un intervalle à déterminer.

- (b) Montrer que g est dérivable sur l'intervalle $]0,\pi[$ et calculer sa dérivée que l'on simplifiera au maximum en l'écrivant sous la forme $g'(x) = \frac{\delta}{5-4\cos(x)}$ où δ est une constante réelle à préciser.
- (c) Déterminer $\lim_{x\to 0} g'(x)$ et $\lim_{x\to \pi} g'(x)$. On admet que cela implique que g est dérivable en 0 et en π avec $g'(0) = \lim_{x\to 0} g'(x)$ et $g'(\pi) = \lim_{x\to \pi} g'(x)$.
- 4. Dans cette question $x \in \left[0, \frac{\pi}{3}\right]$.
 - (a) Montrer qu'il existe un unique $z \in \left[\frac{\pi}{3}, \pi\right]$ tel que f(x) = f(z).
 - (b) Calculer $\cos(g(x))$ et $\sin(g(x))$.
 - (c) Calculer f(g(x)) et en déduire que z=g(x).
 - (d) En déduire des expressions simplifiées de $\cos(x+z)$ et $\cos(x-z)$.
 - (e) Etudier les variations des fonctions :

$$\varphi_1 : \left[0, \frac{\pi}{3}\right] \to \mathbb{R}$$

$$\psi_2 : \left[0, \frac{\pi}{3}\right] \to \mathbb{R}$$

$$t \mapsto t + g(t)$$

$$t \mapsto t - g(t)$$

et en déduire le signe de $\cos\left(\frac{x+z}{2}\right)$ et de $\cos\left(\frac{x-z}{2}\right)$.

- (f) Exprimer $\cos\left(\frac{x+z}{2}\right)$ et $\cos\left(\frac{x-z}{2}\right)$ en fonction de f(x).
- 5. (a) Prouver que la restriction de f à l'intervalle $\left[0, \frac{\pi}{3}\right]$ est bijective à valeurs dans un intervalle J à préciser. On notera h sa bijection réciproque.
 - (b) Expliciter la fonction h.