Chapitre 3: Rappels sur les fonctions

- 1-Donner une primitive de $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}_{+}^{*}$.
- 2-La fonction suivante est-elle continue en 0 et en $\frac{\pi}{2}$?

$$f: \left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$$

$$x \mapsto \left\{ \begin{array}{ll} \displaystyle an(x) \\ \displaystyle x & sin x \end{array} \right. \in \left]0, \frac{\pi}{2}\right[$$

- 3-Trouver les réels x tels que : $2^{x^2} = 3^{x^3}$.
- 4-Soit $f:[0,1]\to [0,1]$ continue. Démontrer que f admet un point fixe, c'est-à-dire qu'il existe $c\in [0,1]$ tel que f(c)=c.

1-Donner une primitive de $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}_{-}^{*}$.

Réponse : La fonction $f: x \mapsto \ln(-x)$ est définie et dérivable sur \mathbb{R}^*_- . En utilisant le théorème donnant la dérivée d'une fonction composée, on a :

$$\forall x \in \mathbb{R}_{-}^*, \ f'(x) = \frac{-1}{-x} = \frac{1}{x}$$

Nous avons bien trouvé une primitive de $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}_{-}^{*}$.

2-La fonction suivante est-elle continue en 0 et en $\frac{\pi}{2}$?

$$f : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$$

$$x \mapsto \left\{\begin{array}{ll} \frac{\tan(x)}{x} & \text{si } x \in \left]0, \frac{\pi}{2}\right[\\ 1 & \text{sinon} \end{array}\right.$$

Réponse : Pour $x \in \left]0, \frac{\pi}{2}\right[$, on a :

$$\frac{\tan(x)}{x} = \frac{\tan(x) - \tan(0)}{x - 0} \underset{x \to 0}{\longrightarrow} \tan'(0) = \frac{1}{\cos^2(0)} = 1$$

Ce qui permet d'affirmer que $\lim_{x\to 0}\frac{\tan(x)}{x}=f(0)$, c'est la définition de f continue en 0.

Par contre $\lim_{x \to \frac{\pi}{2}} \frac{\tan(x)}{x} = +\infty$ ainsi f n'est pas continue en $\frac{\pi}{2}$.

3-Trouver les réels x tels que : $2^{x^2} = 3^{x^3}$.

Réponse : Cette équation, notée (E), est définie pour $x \in \mathbb{R}$. On a :

(E)
$$\Leftrightarrow \ln(2^{x^2}) = \ln(3^{x^3})$$

 $\Leftrightarrow x^2 \ln(2) = x^3 \ln(3)$
 $\Leftrightarrow x = 0 \text{ ou } \ln(2) = x \ln(3)$

L'ensemble des solutions est $S = \left\{0, \frac{\ln(2)}{\ln(3)}\right\}$.

4-Soit $f:[0,1]\to [0,1]$ continue. Démontrer que f admet un point fixe, c'est-à-dire qu'il existe $c\in [0,1]$ tel que f(c)=c.

Réponse : On considère la fonction :

$$g: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto f(x) - x$

La focntion g est continue sur [0,1] comme somme de fonctions continues sur [0,1]. On a : $g(0)=f(0)-0\geq 0$ et $g(1)=f(1)-1\leq 0$ car f est à valeurs dans [0,1]. D'après le théorème des valeurs intermédiaires, on en déduit que g s'annule, c'est-à-dire qu'il existe $c\in [0,1]$ tel que :

$$g(c) = 0 \Leftrightarrow f(c) - c = 0 \Leftrightarrow f(c) = c$$