
MPSI2 Colle 13 (Arithmétique) 2024-2025

1 ⋆⋆ Montrer que 520 + 230 n’est pas un nombre premier.

Corrigé : On va proposer deux méthodes.

• La première technique se base sur des identités remarquables :

520 + 230 = (510 + 215)2 − 2× 510 × 215 = ((510 + 215) + 55 × 28)((510 + 215)− 55 × 28)

Il reste à démontrer que cette factorisation est non triviale. Il est clair que le premier facteur est différent de 1. Pour le second
facteur, on a :

510 + 215 − 55 × 28 = 510 + 215 − 55 × 44 > 510 + 215 − 55 × 54 = (510 − 59) + 215 > 1

Ce qui démontre que ce nombre est composé.

• On peut aussi raisonner modulo 13. On trouve 54 ≡ 1 [13] et 26 ≡ −1 [13]. On en déduit que :

520 + 230 = (54)5 + (26)5 ≡ 15 + (−1)5 ≡ 0 [13]

Ce nombre est divisible par 13 donc il n’est pas premier.

520 + 230 n’est pas premier

2 Trouver tous les (x, y) ∈ Z2 tels que : 5x+ 7y = 8.

Corrigé : On a pgcd(5, 7) = 1 et 1|8, on sait que l’équation a des solutions. On trouve directement les coefficients de
Bézout ou on utilise l’algorithme d’Euclide pour trouver :

5× 3 + 7× (−2) = 1

en multipliant par 8, il vient :
5× 24 + 7× (−16) = 8

Le couple (24,−16) est une solution particulière de l’équation. En utilisant la méthode de l’exercice 61, on en déduit que les
solutions sont de la forme :

x = 24 + 7k et y = −16− 5k avec k ∈ Z

S = {(24 + 7k,−16− 5k), k ∈ Z}

Il était également possible de résoudre cette équation en utilisant une congruence module 5 (pour avoir une équation en
y) ou modulo 7 (pour avoir une équation en x).

3 ⋆⋆ Trouver tous les (x, y, z) ∈ Z3 tels que : 18x+ 20y + 15z = 1.

Corrigé : Les entiers 18, 20 et 15 sont premiers entre eux, l’équation a donc des solutions.

• Analyse. On se donne (x, y, z) ∈ Z3 une solution de l’équation. On passe modulo 2 pour se ramener a
une équation avec une inconnue :

15z ≡ z ≡ 1 [2] ⇔ ∃k ∈ Z, z = 1 + 2k

On reporte dans l’équation pour obtenir :

18x+ 20y + 15(1 + 2k) = 1 ⇔ 9x+ 10y = −7− 15k

On passe modulo 9 pour obtenir :
y ≡ 2 + 3k [9]

C’est-à-dire qu’il existe k′ ∈ Z tel que : y = 2 + 3k + 9k′. On reporte à nouveau dans l’équation de départ :

9x+ 10(2 + 3k + 9k′) = −7− 15k ⇔ x = −3− 5k − 10k′
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Finalement, les éventuelles solutions sont : x = −3− 5k − 10k′

y = 2 + 3k + 9k′

z = 1 + 2k
où (k, k′) ∈ Z2

• Synthèse. On injecte dans l’équation pour vérifier :

18x+ 20y + 15z = 18(−3− 5k − 10k′) + 20(2 + 3k + 9k′) + 15(1 + 2k) = 1

Nous avons bien trouvé toutes les solutions.

S = {(−3− 5k − 10k′, 2 + 3k + 9k, 1 + 2k), (k, k′) ∈ Z2}

4 Soient a et b deux entiers naturels supérieurs ou égaux à 2 avec pgcd(a, b) = 1. Démontrer que
ln(a)

ln(b)
est irrationnel.

Corrigé : Par l’absurde, on suppose que
ln(a)

ln(b)
=

p

q
avec (p, q) ∈ (N∗)2. Cela donne :

q ln(a) = p ln(b) ⇔ ln(aq) = ln(bp) ⇔ aq = bp

Ceci est absurde car a et b sont premiers entre eux et supérieurs ou égaux à 2 donc ils ne peuvent se diviser l’un l’autre.

ln(a)

ln(b)
est irrationnel

4 ⋆⋆

1. Soit n ∈ N et (a, b) ∈ N2. Factoriser a2n+1 + b2n+1.

2. En déduire que si 2n + 1 est premier alors n est une puissance de 2.

3. Pour tout n ∈ N, on pose Fn = 22
n

+ 1.

4. Démontrer que pour tout n ∈ N :

Fn+1 =

n∏
k=0

Fk + 2

5. En déduire que si m et n sont deux entiers naturels distincts alors Fm et Fn sont premiers entre eux.

Corrigé :

1. On utilise la formule ”an − bn” :

a2n+1 + b2n+1 = a2n+1 − (−b)2n+1 = (a− (−b))

2n∑
k=0

ak(−b)2n−k = (a+ b)

2n∑
k=0

ak(−b)2n−k

2. Par contraposée, si n n’est pas une puissance de 2 alors n possède un diviseur impair supérieur ou égal à 3, on peut
écrire n = pq avec p ≥ 3 et q ≥ 1. En appliquant la formule de la question précédente, on a :

2n + 1 = (2q)p + 1p = (2q + 1)

p−1∑
k=0

(2q)k(−1)p−1−k

Cette factorisation est non triviale car 1 < 2q + 1 < (2q)p + 1. On en déduit que 2n + 1 n’est pas premier. Ce qui
démontre la propriété annoncée par contraposition.
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3. On peut démontrer la propriété annoncée par récurrence sur n ∈ N.
• Initialisation. Si n = 0, l’égalité devient F1 = F0 + 2 ce qui est vrai car F0 = 3 et F1 = 5.

• Hérédité. On suppose la formule vraie au rang n ∈ N. On a :

Fn+1 =

n∏
k=0

Fk + 2 ⇔ 22
n+1

− 1 =

n∏
k=0

Fk

On multiplie cette inégalité par Fn+1 = 22
n+1

+ 1 et on reconnait une identité remarquable pour obtenir :

(
22

n+1

+ 1
)(

22
n+1

− 1
)
= 22

n+2

− 1 =

n+1∏
k=0

Fk

C’est-à-dire : Fn+2 =

n+1∏
k=0

Fk + 2 ce qui est la formule voulue au rang n+ 1. Cela termine la récurrence.

4. Soient m et n deux entiers naturels distincts, on suppose sans perte de généralité que m > n, d’après la question
précédente :

Fm −
m∏

k=0

Fk = 2

On remarque que dans le produit le facteur Fn apparait car n < m. Soit d un diviseur commun positif de Fn et Fm

alors d’après l’égalité précédente, on sait que d|2 donc d = 2 ou d = 1. Les entiers Fm et Fn sont impairs donc ne sont
pas divisibles par 2, on vient donc de démontrer que le seul diviseur positif de Fm et Fn vaut 1 : ils sont premiers entre
eux.

∀(m,n) ∈ N2, m ̸= n ⇒ Fm ∧ Fn = 1

5 ⋆⋆⋆ Soit n ≥ 2, démontrer que n4 + 4n n’est pas premier.

Corrigé : Si n est pair alors n4 +4n est pair et strictement supérieur à 2, donc n’est pas premier. Il reste à démontrer
le résultat pour n impair, notons n = 2k + 1 avec k ∈ N∗. On a :

n4 + 4n = n4 + 4× 42k = n4 + 4× (2k)4

Grâce à Sophie Germain, on sait factoriser a4 + 4b4 :

a4 + 4b4 = a4 + 4a2b2 + 4b4 − 4a2b2 = (a2 + 2b2)2 − (2ab)2 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

Ici cela donne :
n4 + 4n = n4 + 4× (2k)4 = (n2 + 22k+1 + 2k+1n)(n2 + 22k+1 − 2k+1n)

Cette factorisation est non triviale car a2 + 2b2 + 2ab > 1 et a2 + 2b2 − 2ab > 1 dès que a ≥ 1 et b ≥ 1.

∀n ≥ 2, n4 + 4n n’est pas premier
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6 ⋆⋆ (Théorème des Ckicken Nuggets) Dans un célèbre fast-food, il y a des bôıtes de 4 ou de 9 chicken nuggets ; les
bôıtes de 6 étant en rupture de stock ce jour-là. Le but de l’exercice est de décrire les nombres de chicken nuggets qu’il
est possible d’atteindre en achetant un mélange de bôıtes de 4 ou de 9 chicken nuggets, puis de généraliser le résultat
obtenu.

1. (a) Montrer qu’il est impossible d’obtenir exactement 23 chicken nuggets.

(b) Démontrer que l’on peut obtenir exactement 24, 25, 26 et 27 chicken nuggets.

(c) En déduire que pour tout entier n supérieur ou égal à 24, on peut obtenir exactement n chicken nuggets.

2. Plus généralement, on considère (a, b) ∈ (N∗)2. On s’intéresse à l’ensemble Γa,b = {ka+ lb, (k, l) ∈ N2}.

(a) Démontrer que si a et b ne sont pas premiers entre eux alors il y a une infinité d’entiers naturels qui n’appar-
tiennent pas à Γa,b.

(b) On suppose dans cette question que a et b sont premiers entre eux et on considère un entier naturel n ≥
(a− 1)(b− 1).

i. Soient (l, l′) ∈ J0, a− 1K2 tels que n− lb ≡ n− l′b [a]. Démontrer que l = l′.

ii. En déduire qu’il existe k ∈ Z et l ∈ J0, a− 1K tels que n = ka+ lb.

iii. Justifier que k ∈ N.
iv. En déduire qu’il y a un nombre fini d’entiers qui n’appartiennent pas à Γa,b.

3. À l’aide de la question 2, expliquer comment se généralise l’exemple de la question 1.

Corrigé :
1. (a) On peut raisonner sur le nombre de bôıtes de 4 chicken nuggets qu’il faut acheter pour arriver à 23.

• Si l’on achète 0 bôıte de 4, il est impossible d’atteindre 23 avec uniquement des bôıtes de 9.

• Si l’on achète 1 bôıte de 4, il est impossible d’atteindre 19 avec uniquement des bôıtes de 9.

• Si l’on achète 2 bôıtes de 4, il est impossible d’atteindre 15 avec uniquement des bôıtes de 9.

• Si l’on achète 3 bôıtes de 4, il est impossible d’atteindre 11 avec uniquement des bôıtes de 9.

• Si l’on achète 4 bôıtes de 4, il est impossible d’atteindre 7 avec uniquement des bôıtes de 9.

• Si l’on achète 5 bôıtes de 4, il est impossible d’atteindre 3 avec uniquement des bôıtes de 9.

On ne peut pas obtenir exactement 23 chicken nuggets

(b) On a les décompositions suivantes :

• 24 = 4 + 4 + 4 + 4 + 4 + 4

• 25 = 4 + 4 + 4 + 4 + 9

• 26 = 4 + 4 + 9 + 9

• 27 = 9 + 9 + 9

Il est possible d’obtenir 24, 25, 26 ou 27 chicken nuggets

(c) Soit n ≥ 24, on pose n′ = n− 24. Effectuons la division euclidienne de n′ par 4 :

∃(q, r) ∈ N2, n′ = 4q + r avec 0 ≤ r ≤ 3

On remarque que le quotient q est bien positif puisque n′ est positif. Comme n = n′ + 24, on a

n = 4q + (24 + r)

D’après la question précédente, pour tout r ∈ J0, 3K, 24 + r peut être atteint avec des bôıtes de 4 ou de 9 et 4q
peut être atteint également en prenant q bôıtes de 4.

Si n ≥ 24, il est possible d’obtenir n chicken nuggets

2. (a) Soit (a, b) ∈ (N∗)2, on suppose que a et b ne sont pas premiers entre eux, c’est-à-dire qu’il existe un entier naturel
d ≥ 2 tel que d|a et d|b. Ainsi pour tous k et l des entiers naturels, on a d|ka+ lb. En résumé, les entiers naturels
qui appartiennent à Γa,b sont tous divisibles par d. Les entiers qui ne sont pas divisibles par d n’appartiennent
pas à Γa,b, il y en a clairement une infinité ; par exemple tous ceux de la forme dr + 1 où r ∈ N.

Si a et b ne sont pas premiers entre eux alors N \ Γa,b est infini
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(b) i. Soient (l, l′) ∈ J0, a−1K2. On suppose que n− lb ≡ n− l′b, en simplifiant cela donne b(l′− l) ≡ 0 [a], c’est-à-dire
que a|b(l′ − l). Or a et b sont premiers entre eux ainsi d’après le théorème de Gauss, a|l′ − l. D’autre part, on
a (l, l′) ∈ J0, a − 1K2 ce qui implique que l′ − l ∈ J−(a − 1), a − 1K. Le seul multiple de a appartenant à cet
intervalle est 0, ce qui démontre que l = l′.

l = l′

ii. D’après la question précédente lorsque l décrit J0, a − 1K, l’entier n − lb ne prend que des valeurs différentes
modulo a, c’est-à-dire qu’il y a a valeurs différentes prises modulo a. Ainsi, il existe l ∈ J0, a − 1K tel que
n− lb ≡ 0 [a]. Par définition de la relation de congruence, cela signifie qu’il existe k ∈ Z tel que n− lb = ka.

∃(k, l) ∈ Z× J0, a− 1K, n = ka+ lb

On peut également utiliser le fait qu’une fonction injective d’un ensemble fini dans lui-même est surjective.

iii. En utilisant la condition de l’énoncé n ≥ (a− 1)(b− 1) et le fait que l ≤ a− 1, on a :

ka = n− lb ≥ (a− 1)(b− 1)− (a− 1)b = −a+ 1 ⇔ (k + 1)a ≥ 1

Comme a ≥ 1, l’inégalité précédente implique k ≥ 0.

∃(k, l) ∈ N× J0, a− 1K, n = ka+ lb

iv. Les trois questions précédentes démontrent que pour tout n ≥ (a−1)(b−1), on a n ∈ Γa,b ainsi il n’y a qu’un
nombre fini d’entiers qui n’appartient pas à Γa,b.

Si a et b sont premiers entre eux alors N \ Γa,b est fini

3. Dans l’exemple de la question 1, on a 4 et 9 qui sont premiers entre eux. D’après la question 2. cela permet d’affirmer
que pour tout entier supérieur à (4 − 1)(9 − 1) = 24 s’écrit comme combinaison à coefficients positifs de 4 et 9, ce
qui nous avons effectivement vérifié dans la question 1. La question 2 démontre que l’on peut remplacer 4 et 9 par
deux entiers premiers entre eux, a et b, pour obtenir que tout nombre entier naturel à partir d’un certain rang est
combinaison à coefficients positifs de a et b. De plus, le rang (a− 1)(b− 1) convient.

Le problème étudié se généralise à plus de deux entiers. Si l’on se donne p entiers : 1 < a1 < a2 < ... < ap, un entier
N quelconque peut-il s’exprimer comme une combinaison : N = k1ap1

+ k2ap2
...+ kpap où les coefficients k1,...,kp sont des

entiers positifs ? On sait démontrer que si les (ai)1≤i≤p sont premiers entre eux, il n’y a qu’un nombre fini d’entiers N qui
ne peuvent pas s’écrire ainsi et le plus grand d’entre eux est noté g(a1, ..., ap) (nombre de Frobenius de la famille (ai)1≤i≤p).
On a vu que g(4, 9) = 23 et plus généralement g(a, b) = (a − 1)(b − 1) − 1. On ne connait pas de formule explicite pour
g(a1, ..., ap) si p ≥ 3.

Ce problème est également lié au suivant : quel système de monnaie faut-il adopter afin d’obtenir une somme inférieure
à 1 euro en un minimum de pièces ? Par exemple, si l’on s’autorise 6 pièces, il est optimal de choisir des pièces de 1, 2, 5,
11, 25 et 62 centimes d’euros. Il faudra alors en moyenne 3, 13 pièces pour obtenir une somme inférieure à 1 euro.

7 ⋆⋆ Trouver tous les (x, y) ∈ N2 tels que :

(x ∨ y)2 − 5(x ∧ y)2 = 2000

où x ∨ y = ppcm(x, y) et x ∧ y = pgcd(x, y).

Corrigé : • Analyse. On se donne (x, y) ∈ N2 vérifiant l’équation. Pour simplifier, on note d = pgcd(x, y) et
m = ppcm(x, y). On a d|m donc d2|m2 − 5d2 = 2000. On décompose 2000 en facteurs premiers :

2000 = 24 × 53

ce qui nous permet de trouver les entiers d tels que d2|2000, on a d ∈ {1, 2, 4, 5, 10, 20}. De plus m =
√
2000 + 5d2 doit être

un entier. On peut vérifier (éventuellement à l’aide d’une calculatrice) que seul d = 10 convient et dans ce cas m = 50. Ce
qui nous ramène à résoudre le système : {

x ∧ y = 10
x ∨ y = 50
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On peut écrire x = 10x′ et y = 10y′ avec x′ ∧ y′ = 1. On sait que xy = md = 500 donc x′y′ = 5. On en déduit que
(x′, y′) ∈ {(1, 5), (5, 1)} et

(x, y) ∈ {(10, 50), (50, 10)}

• Synthèse. On vérifie par un calcul direct que ces deux couples conviennent.

S = {(10, 50), (50, 10)}

9 ⋆ Soient (a, b) ∈ Z2 et (n, p) ∈ N2. On suppose que p|n, démontrer que (ap − bp)|(an − bn).

Corrigé : Par hypothèse, il existe k ∈ N tel que pk = n. On a :

an − bn = (ap)k − (bp)k = (ap − bp)

k−1∑
i=0

(ap)i(bp)k−1−i

Ce qui démontre que (ap − bp)|(an − bn).

10 Trouver tous les (x, y) ∈ Z2 tels que
1

2x
+

1

y
=

1

10
.

Corrigé : Pour (x, y) ∈ Z2 non nuls, on a :
1

2x
+

1

y
=

1

10

” ⇔ 5y + 10x

10xy
=

xy

10xy
” ⇔ 10x+ 5y = xy
” ⇔ (x− 5)(y − 10) = 50
” ⇔ (x− 5, y − 10) ∈ {(1, 50), (2, 25), (5, 10), (10, 5), (25, 2), (50, 1), (−1,−50), (−2,−25), (−5,−10), (−10,−5), (−25,−2), (−50,−1)}
” ⇔ (x, y) ∈ {(6, 60), (7, 35), (10, 20), (15, 15), (30, 12), (55, 11), (4,−40), (3,−15),�

��(0, 0), (−5, 5), (−20, 8), (−45, 9)}

11 ⋆ Soient (a, b) ∈ Z2 premiers entre eux. Démontrer que a+ b et ab sont premiers entre eux.

Corrigé : Par l’absurde si a + b et ab ne sont pas premiers entre eux, ils admettent un diviseur d ≥ 2, ce diviseur a
lui même un diviseur premier p. On a p|d et d|ab donc p|ab, étant donné que p est premier, on en déduit que p|a ou p|b. On
suppose que p|a, l’autre cas étant identique.

On a aussi p|a+ b donc p|a+ b− a = b, ainsi p est un diviseur premier de a et b : c’est absurde.

On peut aussi résoudre cet exercice en considérant des relations de Bézout.
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