Chapitre 7: Exercices 1 à 10

Il y a juste les réponses, si vous voulez des précisions, il suffit de me le demander. Si vous trouvez une erreur, n'hésitez pas à me le dire.

1

a)
$$z = 2 + 5i$$

b)
$$z = -2 + 11i$$

c)
$$z = 2i$$

d)
$$z = -21 - 20i$$

e)
$$z = -2 + 2i$$

f)
$$z = 11 - 2i$$

g)
$$z = \frac{1}{2} + \frac{1}{2}i$$

h)
$$z = -2i$$

2

- a) Cercle de centre O et de rayon 3.
- b) Cercle de centre A d'affixe 2 i et de rayon 1.
- c) Droite d'équation x = -2.
- d) Droite d'équation y = 3.

3

a)
$$z = 1 - 2i$$

b)
$$z = \frac{3}{5} - \frac{4}{5}i$$

c)
$$z = 3i$$
 ou $z = -\frac{1}{2} + \frac{1}{2}i$

d)
$$z = -\frac{1}{2} - \frac{1}{2}i$$

e)
$$z = -i$$

f)
$$z = \frac{1}{5} + \frac{3}{5}i$$

 $\boxed{4}$ On peut rédiger par équivalences, on a :

$$z' \in \mathbb{R} \iff \overline{z'} = z'$$

$$\Leftrightarrow \frac{-i\overline{z} - 1}{\overline{z} + i} = \frac{iz - 1}{z - 1}$$

$$\Leftrightarrow$$
 $-(i\overline{z}+1)(z-i)=(\overline{z}+i)(iz-1)$

 $\Leftrightarrow z\overline{z} = 1$ (en développant l'expression précédente)

$$\Leftrightarrow |z| = 1$$

5

a)
$$z = \frac{3+i}{2}$$
 ou $z = \frac{3-i}{2}$

b)
$$z = \frac{1 + \sqrt{5}}{2}$$
 ou $z = \frac{1 - \sqrt{5}}{2}$

c)
$$z = 2 + 2i$$
 ou $z = 2 - 2i$

d)
$$z = i\sqrt{3}$$
 ou $z = -i\sqrt{3}$

e)
$$z = i$$
 ou $z = -i$ ou $z = i\sqrt{2}$ ou $z = -i\sqrt{2}$

f)
$$z = -1$$
 ou $z = 1 + 2i$ ou $z = 1 - 2i$

 $\boxed{6}$ On vérifie que -3 est bien solution. On peut ainsi factoriser l'équation par z+3 :

$$z^3 + 3z^2 + z + 3 = (z+3)(z^2+1)$$

On voit alors que les solutions de l'équation sont -3, i et -i.

7

$$\overline{a)} \ a = \pm \frac{1}{\sqrt{3}}$$

b)
$$a = 0$$
 ou $a = \pm \sqrt{3}$

8

$$\overline{z_A} = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$z_B = -1 + i = \sqrt{2}e^{i\frac{3\pi}{4}}$$

$$z_C = -1 - i = \sqrt{2}e^{i\frac{5\pi}{4}}$$

$$z_D = 1 - i = \sqrt{2}e^{i\frac{7\pi}{4}}$$

9

- a) $z_1 = 4e^{i\frac{\pi}{3}}$
- b) $z_2 = 2e^{i\frac{3\pi}{4}}$
- c) $z_3 = 4e^{-i\frac{\pi}{4}}$
- d) $z_4 = 2e^{i\frac{3\pi}{2}}$
- e) $z_5 = \frac{1}{2}e^{i\frac{2\pi}{3}}$
- f) $z_6 = \sqrt{8}e^{i\frac{\pi}{4}}$
- g) $z_7 = 8e^{-i\frac{6\pi}{4}}$
- h) $z_8 = \sqrt{2}e^{-i\frac{7\pi}{12}}$
- i) $z_9 = 8e^{i\frac{\pi}{2}}$
- j) $z_{10} = 12e^{i\frac{5\pi}{4}}$

10

On vérifie que $|c-a|^2 + |b-a|^2 = |b-c|^2$, ce qui nous apprend que le triangle est rectangle en A. De plus, |c-a| = |b-a| donc le triangle est isocèle.

On trouve le point A' d'affixe $4 - \frac{1}{4}i$.