Chapitre 3 : Rappels sur les fonctions

- 1-Soient f et g deux fonctions définies de $\mathbb R$ dans $\mathbb R$ avec f paire et g impaire. Est-il vrai que $g \circ f$ est paire? Est-il vrai que $f \circ g$ est paire?
- 2-Soient f et g deux fonctions de $\mathbb R$ dans $\mathbb R$, avec f 2-périodique et g 3-périodique. Démontrer que $f \times g$ est périodique.
- 3-Soit $f: \mathbb{R} \to \mathbb{R}$ et $(a,b) \in \mathbb{R}^2$. Vrai ou faux :

si
$$f$$
 est croissante et $f(a) \le f(b)$ alors $a \le b$

4-Soit $f: \mathbb{R} \to \mathbb{R}$ strictement croissante et $(a,b) \in \mathbb{R}^2$. Vrai ou faux :

$$f(a) \leq f(b) \Rightarrow a \leq b$$

- 5-La somme de deux fonctions monotones est-elle aussi une fonction monotone?
- 6-Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction monotone strictement négative. La fonction $\frac{1}{f}$ est-elle monotone sur \mathbb{R} ?
- 7-Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable et paire. Démontrer que f' est impaire.

1-Soient f et g deux fonctions définies de \mathbb{R} dans \mathbb{R} avec f paire et g impaire. Est-il vrai que $g \circ f$ est paire? Est-il vrai que $f \circ g$ est paire?

Réponse : Pour tout $x \in \mathbb{R}$, on a :

$$g \circ f(-x) = g(f(-x)) = g(f(x)) = g \circ f(x)$$

Ce qui démontre que $g \circ f$ est paire. D'autre part :

$$f \circ g(-x) = f(g(-x)) = f(-g(x)) = f(g(x)) = f \circ g(x)$$

Ce qui démontre que $f \circ g$ est paire.

2-Soient f et g deux fonctions de $\mathbb R$ dans $\mathbb R$, avec f 2-périodique et g 3-périodique. Démontrer que $f \times g$ est périodique.

Réponse : Soit
$$x \in \mathbb{R}$$
, on a $x + 6 \in \mathbb{R}$ et : $(f \times g)(x + 6) =$

$$f(x+6)g(x+6) = f(x+2+2+2)g(x+3+3) = f(x)g(x) = (f \times g)(x)$$

Ce qui démontre que $f \times g$ est 6-périodique.

3/8

3-Soit $f: \mathbb{R} \to \mathbb{R}$ et $(a,b) \in \mathbb{R}^2$. Vrai ou faux :

si f est croissante et $f(a) \le f(b)$ alors $a \le b$

Réponse : C'est faux, prenons la fonction constante égale à 1 définie sur \mathbb{R} . C'est une fonction croissante et si l'on prend a=3 et b=2, on a :

$$f(a) \le f(b)$$
 mais $a > b$

4/8

4-Soit $f: \mathbb{R} \to \mathbb{R}$ strictement croissante et $(a,b) \in \mathbb{R}^2$. Vrai ou faux :

$$f(a) \le f(b) \Rightarrow a \le b$$

Réponse : C'est vrai, la contraposée s'écrit :

$$\forall (a,b) \in \mathbb{R}^2, \ a > b \Rightarrow f(a) > f(b)$$

Ceci constitue la définition de f strictement croissante.

5-La somme de deux fonctions monotones est-elle aussi une fonction monotone?

Réponse : C'est faux, donnons un contre-exemple. On se place sur \mathbb{R}_+ , on a $f: x \mapsto x$ qui est croissante et $g: x \mapsto -x^2$ qui est décroissante. Pourtant :

$$f + g : x \mapsto x - x^2$$

n'est ni croissante si décroissante sur $\mathbb{R}+$, ce que l'on voit en faisant le tableau de variation.

6-Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction monotone strictement négative. La fonction $\frac{1}{f}$ est-elle monotone sur \mathbb{R} ?

Réponse : Posons $g: x \mapsto \frac{1}{x}$ définie sur \mathbb{R}_{-}^* , cette fonction est strictement décroissante sur \mathbb{R}_{-}^* . La fonction $\frac{1}{f}$ est égale à $g \circ f$ (qui a un sens car f est à valeurs dans \mathbb{R}_{-}^*) : cette fonction est monotone comme composée de fonctions monotones.

7-Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable et paire. Démontrer que f' est impaire.

Réponse : Pour tout $x \in \mathbb{R}$, on a : f(-x) = f(x). On dérive cette relation, f étant dérivable sur \mathbb{R} , cela donne :

$$\forall x \in \mathbb{R}, \ -f'(-x) = f'(x)$$

C'est-à-dire que pour tout $x \in \mathbb{R}$, f'(-x) = -f'(x). On en déduit que f' est impaire.

8/8